概率论总结(二):连续随机变量

目录

  • 连续随机变量定义及性质
  • 期望和方差
  • 常见的连续随机变量
    - 均匀随机变量
    - 指数随机变量
    - 正态随机变量
  • 多个随机变量的联合概率密度
  • 条件
  • 独立

骨骼图:
在这里插入图片描述
在这里插入图片描述

连续随机变量定义及性质

定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PDF与离散随机变量的分布列是对应的。
特别的,当B是一个区间时,在这里插入图片描述
这个积分可以理解为,PDF和区间[a,b]所形成的曲边梯形的面积。
由于单点对积分的计算不起作用。因此:在这里插入图片描述
性质:
1.
PDF是非负的
在这里插入图片描述
2.
在这里插入图片描述

期望和方差

期望:
连续随机变量X的期望定义如下:
在这里插入图片描述
X的任意函数Y=g(x)也是一个随机变量,Y可以是连续的也可以是离散的,不过下式总成立:
在这里插入图片描述
例1: 对于离散或连续随机变量X,证明下式:
在这里插入图片描述
在这里插入图片描述
例2:证明:在这里插入图片描述
在这里插入图片描述

方差:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

常见的连续随机变量

均匀随机变量:
假设X取值于[a,b]的任意两个长度的子区间的概率是相通的,这种变量称为具有均匀分布的随机变量,其PDF为:
在这里插入图片描述
在这里插入图片描述
期望值刚好等于PDF的对称中心。
在这里插入图片描述
在这里插入图片描述
指数随机变量
若随机变量X的PDF具有以下形式:
在这里插入图片描述
则称X是指数随机变量,其中λ是分布的参数,λ>0。
特性:
X超过某个值的概率,随着这个值的增加而按指数递减。即👍🏼:
在这里插入图片描述
指数分布常用来描述,某个时间为止所用的时间,如某个机器的使用寿命。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
正态随机变量
一个随机变量X称为正态的或高斯的,则它的PDF为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
线性变换之下的随机变量的正态性保持不变。
在这里插入图片描述
在这里插入图片描述
标准正态随机变量:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀
大量的独立同分布的随机变量(不必正态)的和的分布近似地服从正态分布。而这个事实与各个和项的具体分布是无关的。这个事实就是著名的中心极限定理
👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀

多个随机变量的联合概率密度

如果对任意的平面上的二元集合B,等式在这里插入图片描述
在这里插入图片描述
上式的二重积分区域为B,若B={(x,y)|a<x<b,c<x<d}则:
在这里插入图片描述
如果B在二维平面,就可以得到密度函数的诡异话条件:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对于均匀分布

在子集S上的联合均匀PDF由下式定义:
在这里插入图片描述
对于任何子集A,(X,Y)落入区域A的概率为:
在这里插入图片描述
布丰抛针实验
在平面上画了若干条平行线, 相互之间的距离为 d .现在往平面上随机地抛掷一根针, 针的长度为 l .问针与直线相交的概率有多大?
解:
在这里插入图片描述

期望
设X和Y为联合随机变量,g是一个函数,则z=g(x,y)是一个随机变量。
在这里插入图片描述
特殊地,E[aX+bY+c]=aE[X]+b[Y]+c

多于两个随机变量的情况:
在这里插入图片描述

条件

在连续情况下,有时会出现以零概率事件为条件的情况,这在离散情况下是无法处理的。

以事件为条件的随机变量

1.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
B是实数轴上的任意集合。

2.在这里插入图片描述
在这里插入图片描述
3.
在这里插入图片描述
在这里插入图片描述

例:(指数随机变量的无记忆性)
一个灯泡的使用寿命 T 是一个指数随机变量,其参数为λ 。阿丽将灯打开后离开房间,在外面呆了一段时间以后(时间长度为 t ),她回到房间,灯还是亮着。这相当于事件 A={T>t}发生了。记 X 为灯泡的剩余寿命,问 X 的条件分布函数是什么?
解:实际上 X 是在 A 发生的条件下的寿命,我们有:
在这里插入图片描述
在这里插入图片描述
灯泡的剩余寿命X的分布是指数分布,其参数也是λ,这和灯泡已经亮了多少个小时无关。指数分布的性质就是无记忆性。

以另一个随机变量为条件的条件概率密度函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
另外:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
条件期望
记 X 和 Y 为联合连续随机变量, A 是满足P(A)>0的事件。
1.X 在给定事件 A 之下的条件期望由下式定义:
在这里插入图片描述
给定Y=y之下的条件期望由下式定义:
在这里插入图片描述
2.
在这里插入图片描述
在这里插入图片描述
3.全期望定理:
在这里插入图片描述
在这里插入图片描述
相似地,在这里插入图片描述
4.
在这里插入图片描述
在这里插入图片描述
关于3里两个等式的证明:
在这里插入图片描述
例 (阶梯形概率密度函数的均值和方差) 
假定 X 的概率密度函数为下列的阶梯函数:

在这里插入图片描述
现记A1={X落入第一个区间【0,1】} A2={X落入第二个区间【1,2】}
利用X的PDF函数可以得到:
在这里插入图片描述
我们还可以利用 X 的条件概率密度函数计算 X 在 和 之条件下的均值和二阶矩.由于f X|A1 和f X|A2 都是均匀概率密度函数
我们知道在【a,b】上均匀分布的随机变量的均值为
在这里插入图片描述
因此,在这里插入图片描述
利用全期望公式得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

独立

若两个连续随机变量 X 和 Y 的联合概率密度函数是它们各自
的边缘概率密度函数的乘积,a在这里插入图片描述则称X,Y相互独立。
在这里插入图片描述
特别地,在这里插入图片描述
性质在这里插入图片描述对一切X,Y成立,即使是 X 为离散,Y 为连续的情况,这个定义也是适用的。

若 X 与 Y 相互独立,则对任意函数 g 和 h, 下式成立:在这里插入图片描述
独立随机变量之和的方差等于它们的方差之和。

👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀👀
贝叶斯准则:
在这里插入图片描述

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值