opencv-python教程学习系列10-颜色空间转换

前言

opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍颜色空间转换,坚持学习,共同进步。

系列教程参照OpenCV-Python中文教程

系统环境

系统:win7_x64;

python版本:python3.5.2;

opencv版本:opencv3.3.1;

内容安排

1.知识点介绍;

2.测试代码;

具体内容

1.知识点介绍;

使用的库有cv2/numpy,涉及函数有cv2.cvtColor(),cv2.inRange();

1.1 转换颜色空间;

1)opencv有很多种颜色空间转换方法,常用的一般是BGR转灰度/HSV;

函数表示为cv2.cvtColor(input_image, flag),其中flag就是转换类型,比如cv2.COLOR_BGR2GRAY、cv2.COLOR_BGR2HSV等。

2)在OpenCV的HSV格式中,H(色彩/色度)的取值范围是 [0,179],S(饱和度)的取值范围 [0,255],V(亮度)的取值范围 [0,255]。

但是不同的软件使用的值可能不同,所以当拿OpenCV的HSV值与其他软件的HSV值对比时,一定要记得归一化

hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

3)如何查看flag表示的格式转换类型;

#查看所有格式转换
import cv2 
flags = [i for i in dir(cv2) if i.startswith("COLOR_") ]
print (len(flags))#list的长度;
print (flags)

1.2 物体跟踪;

可以利用格式转换提取物体的颜色信息,HSV要比BGR更好地表示某种特定颜色;

提取某种颜色的步骤:step1,从视频中获取图像帧;step2,将图像转换到HSV空间;

step3,设置HSV中某种颜色的范围;step4,获取图像中的某种颜色,从而进行其他处理;

#设定蓝色的阀值
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
#根据阀值构建掩模
mask = cv2.inRange(hsv,lower_blue,upper_blue)
#对原图和掩模进行位运算
res = cv2.bitwise_and(frame,frame,mask=mask)

1.3 如何找到物体的HSV值;

2.测试代码;

2.1 物体跟踪;

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while(1):
    #获取每一帧
    ret,frame = cap.read()
    #转换到HSV
    hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
    #设定蓝色的阀值
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])
    #根据阀值构建掩模
    mask = cv2.inRange(hsv,lower_blue,upper_blue)
    #对原图和掩模进行位运算
    res = cv2.bitwise_and(frame,frame,mask=mask)
    #显示图像
    cv2.imshow('frame',frame)
    cv2.imshow('mask',mask)
    cv2.imshow('res',res)
    k = cv2.waitKey(5)&0xFF
    if k == 27:
        break
#关闭窗口
cv2.destroyAllWindows()

2.2 如何找到物体的HSV值;

#查看所有格式转换
import cv2 
flags = [i for i in dir(cv2) if i.startswith("COLOR_") ]
print (len(flags))#list的长度;
#print (flags)

#
import numpy as np
#green=np.uint8([0,255,0])
#hsv_green=cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
#out:
#error: /builddir/build/BUILD/opencv-2.4.6.1/ modules/imgproc/src/color.cpp:3541: 
#error: (-215) (scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F) in function cvtColor

#scn (the number of channels of the source),
#i.e. self.img.channels(), is neither 3 nor 4. 
# #depth (of the source), 
#i.e. self.img.depth(), is neither CV_8U nor CV_32F.
# 所以不能用 [0,255,0] 而用 [[[0,255,0]]] 
# 的三层括号应分别对应于 cvArray cvMat IplImage
#以上内容没明白???
green=np.uint8([[[0,255,0]]])
hsv_green=cv2.cvtColor(green,cv2.COLOR_BGR2HSV) 
print (hsv_green )
#out: [[[60 255 255]]]

参考

1.颜色空间转换

2.list长度

转载于:https://www.cnblogs.com/happyamyhope/p/8127413.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值