极大线性无关组的定义与性质

本文探讨了向量组的线性无关性、极大无关组的概念及其性质,包括秩的定义、极大无关组的唯一性及其实现条件。通过习题解析,深入理解了秩为r的向量组中任意r个线性无关向量构成极大无关组的证明过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 线性无关;

2. 新加向量必然线性相关;

3. 极大无关组不唯一;

4. 极大无关组的个数唯一:称作秩(rank);

5. 极大无关组与向量组等价;

6. 线性无关的向量组的极大无关组为自身 $\leftrightarrow$秩=个数;

7.等价的向量组有相同的秩;

推论:

新加的向量一定可以由线性无关组线表出

习题1:

秩为r的向量组中任意r个线性无关向量都构成极大无关组

Proof. 只需证这r个无关的,再+1个就会得到线性相关组(事实上,这第r+1个能由前r个线性表出);

秩为r说明有r个线性无关的极大无关组,进而等价原组,从而要证明的这r+1个可由r个极大无关组表出,从而相关;

 8. 秩为r的向量组中任意r个线性无关向量都为极大无关组;

习题2:

如果秩为r的向量组中存在r个向量,使得向量组所有向量都可以由其表出,则它必是极大无关组;

Proof. 由性质6,只需证明这r个向量线性无关,证1:如果相关,必有一向量可以由r-1个向量线性表出,

因此向量组也能由这r-1个表出,进而r个极大无关组也能由这r-1个表出,因此得到r个无关组相关的矛盾。

证2:由题向量组和这r个等价,因此r个极大无关向量和这r个向量组等价,等价组有相同的秩,因此这r个

向量秩为r,说明这r个向量线性无关;

 

转载于:https://www.cnblogs.com/mathlife/p/9710644.html

极大无关组和向量组等价是线性代数中的两个重要概念,下面分别解释这两个术语以及它们之间的关系。 ### 极大无关组 对于一个给定向量空间V内的有限向量集合S = {v_1, v_2,..., v_n},如果存在子集T ⊆ S满足以下条件,则称这个子集为S的一个极大无关组: - T中任何非零数量的向量都是线性无关的; - 如果从S中再加入任何一个不在T里的向量,那么得到的新集合将是线性相关的;即新集合不再保持线性独立性质。 换句话说,极大无关组是一个最大化的线性无关向量子集。它既包含了尽可能多的原集合中的信息又保证了这些元素之间没有多余的依赖关系。 ### 向量组等价 当说两组向量A={a_1,a_2,…,a_m} 和 B={b_1,b_2,…,b_k} 是等价的时候,意味着这两组可以互相表示对方的所有成员。具体来说就是指每一组都可以由另一组经过线性组合而获得。形式上讲, - A中的每一个向量都能被B中的某些向量以某种系数相乘后再加起来所构成, - 反之亦然,B中的每个向量也可以用同样的方式通过A中的向量构造出来。 这种情况下我们可以说A和B互为基底或者说是彼此张成的空间相同。 ### 它们的关系 在一个向量空间里,任意一组向量都有可能找到不止一种极大无关组,但是所有的极大无关组都拥有相同的基数(即其中含有的向量数目),这被称为该向量组的秩(rank)。而且,不同极大无关组之间总是相互等价的——因为它们都能够生成整个向量空间并且自身内部没有任何冗余的信息。 此外,如果两个向量组等价,那么其中一个必然是另一个的最大线性无关部分之一,也就是说两者有着相同的秩。反之则不一定成立,除非是在讨论同一个向量空间的不同基的情况下。 综上所述,极大无关组向量组等价的概念紧密相连,前者描述了一种特殊的、最简化的向量选取方案,后者定义了一个更为广泛意义上的相似性标准,二者共同构成了理解向量空间结构的重要理论框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值