线性方程相对于高数而言,很多方面的理解都会不一样,有时候的理解方式可以通过高数形式来重新认识。
理解一下方程组的极大线性无关组:
有一个3元方程组(3个式子),其实算来算去它的有效方程为两个,第一个与第二个,或者第一个与第三个。此时这个有效方程的个数就是极大线性无关组个数,并且这个极大线性无关组不唯一(可以是由第一个与第二个组成,也可以是第一个与第三个组成)
接着再看线性无关的解向量:
有一个4元方程组(4个式子),将其化为系数矩阵,求得它的秩为2,两个有效方程只能解出两个未知数,所以必然有2个是自由变量,所以可以将自由变量x3与x4设置为(1,0)和(0,1),并根据两个有效方程解出x1与x2的值。这其中就得到两个线性无关的解向量,怎么得到的呢:
4个未知数-2个有效方程(系数矩阵的秩)=2个线性无关解
于是根据(1,0)和(0,1)得到的两个完整的解被称为它的两个基础解系。
以下是我最开始的理解,但是还是有些不透彻:
基础解系,与极大线性无关组息息相关,但是极大线性无关组有很多,难不成基础解系也有很多个?这就与n-r(A)=基础解系个数相矛盾了。依据我的不严谨数学理解,这个地方的基础解系个数指的是基础解系的种类个数。例如
A=
,这个矩阵中,第三列设为自由变量,自由变量你可以随便取,你取1或2或3等等都可以,不管怎么取值,都会有对应的两个主变量跟着变化,显然若是有两个自由变量,则主变量也随之变化。整个过程中虽然取的极大线性无关组有各种不同,但都是基于一个自由变量或者多个自由变量来取其解的。所以可以理解为:基础解系跟自由变量是息息相关的,跟它的字面意思一样,它是一个基于自由变量的不同取值产生的一个同类型的“解的系列”,同一个自由变量产生的一系列的解集被称为“基础解系”。
下面有知乎大佬关于基础解系的严谨的解释: