泰勒级数

泰勒级数的重大意义,即在于“它使单变量函数(只有一个自变量x的函数)可以展成幂级数的形式”,然后再处理计算。这对解决“复杂函数”具有重要意义。将复杂函数“化成”幂函数的连加形式,即幂级数形式,由于人们对处理幂函数很有经验,所以这样一来,本来没法处理的“非初等函数”的“复杂函数”,就可以处理计算了。
泰勒原以为他的发现适用于一切单变量函数,但后来证明不行。
泰勒之后,麦克劳林、拉格朗日、柯西发展完善了泰勒公式。拉格朗日认识到了这公式的重要性(以前没认识到);而公式的严谨证明由柯西于十九世纪二十年代最终完成。

 

 

在数学上,一个在实数复数a邻域上的无穷可微实变函数复变函数ƒ(x)的泰勒级数是如下的幂级数

\sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}

这里,n! 表示n阶乘f^{(n)}(a)\,\!表示函数f在点a处的n导数。如果a = 0,那么这个级数也可以被称为麦克劳伦级数

泰勒级数列表[编辑]

复平面上余弦函数的实数部分。
复平面上余弦函数的第八度逼近
两个以上的曲线放在一起

下面我们给出了几个重要的泰勒级数。参数x 为复数时它们依然成立。

\frac{1}{1-x} = \sum^{\infin}_{n=0} x^n\quad \forall x: \left| x \right| < 1
(1+x)^\alpha = \sum^{\infin}_{n=0} C(\alpha,n) x^n\quad \forall x: \left| x \right| < 1, \forall \alpha \in \mathbb{C}
二项式展开中的C(α, n)是 二项式系数
e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!}\quad \forall x
\ln(1+x) = \sum^{\infin}_{n=1} \frac{(-1)^{n+1}}n x^n\quad \forall x\in (-1,1]
\sin x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\quad \forall x
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n}\quad \forall x
\tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1}\quad \forall x: \left| x \right| < \frac{\pi}{2}
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad \forall x: \left| x \right| < \frac{\pi}{2}
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad \forall x: \left| x \right| < 1
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad \forall x: \left| x \right| < 1
\arctan x = {​{\pi {\mathop{\rm sgn}} x} \over 2} - {1 \over x} + \sum_{k = 1}^\infty {​{​{\left( { - 1} \right)^k } \over {\left( {2k + 1} \right)x^{2k + 1} }}} \quad \forall x: \left| x \right| > 1
tan( x)展开式中的 B k伯努利数。sec( x)展开式中的 E k欧拉数
\sinh x = \sum^{\infin}_{n=0} \frac{1}{(2n+1)!} x^{2n+1}\quad \forall x
\cosh x = \sum^{\infin}_{n=0} \frac{1}{(2n)!} x^{2n}\quad \forall x
\tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1}\quad \forall x: \left| x \right| < \frac{\pi}{2}
\sinh^{-1} x = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad \forall x: \left| x \right| < 1
\tanh^{-1} x = \sum^{\infin}_{n=0} \frac{1}{2n+1} x^{2n+1}\quad \forall x: \left| x \right| < 1
tanh( x)展开式中的 B k伯努利数
W_0(x) = \sum^{\infin}_{n=1} \frac{(-n)^{n-1}}{n!} x^n\quad \forall x: \left| x \right| < \frac{1}{e}

转载于:https://www.cnblogs.com/alexanderkun/p/3866014.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值