泰勒级数展开

1. 泰勒级数展开

实际优化问题的目标函数往往比较复杂。为了使问题简化,通常将目标函数在某点附近展开为泰勒(Taylor)多项式来逼近原函数。

1.1 (一阶)偏导数的概念

以二元函数为例:
设有二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y),若存在
d d x f ( x , y 0 ) ∣ x = x 0 \frac{d}{dx}f(x,y_0)|_{x=x_0} dxdf(x,y0)x=x0
则,称 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x偏导数(值)
记为:
f x ′ ( x 0 , y 0 ) f'_x(x_0,y_0) fx(x0,y0) ∂ f ( x 0 , y 0 ) ∂ x \frac{\partial f(x_0,y_0)}{\partial x} xf(x0,y0) ∂ f ∂ x ∣ ( x 0 , y 0 ) \frac{\partial f}{\partial x}|_{(x_0,y_0)} xf(x0,y0)

【注】:可以看出偏导数的本质是 一元函数的导数

z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D的每一个点 ( x , y ) (x,y) (x,y)处都有偏导数(值),一般来说,它们仍是 x , y x,y x,y的函数,称为 f ( x , y ) f(x,y) f(x,y)偏导(函)数,简称偏导数
记为:
f x ′ ( x , y ) f'_x(x,y) fx(x,y) ∂ f ∂ x \frac{\partial f}{\partial x} xf


1.2 二阶偏导数与混合偏导数的概念

若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的一阶偏导(函)数 ∂ f ∂ x = f x ′ , ∂ f ∂ y = f y ′ \frac{\partial f}{\partial x}=f'_x, \frac{\partial f}{\partial y}=f'_y xf=fx,yf=fy关于 x x x y y y的偏导数仍然存在,
则,称一阶偏导数的偏导数是 z = f ( x , y ) z=f(x,y) z=f(x,y)的二阶偏导数。
二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)有四个二阶偏导数:
f x x ′ ( x , y ) f'_{xx}(x,y) fxx(x,y) f x y ′ ( x , y ) f'_{xy}(x,y) fxy(x,y) f y x ′ ( x , y ) f'_{yx}(x,y) fyx(x,y) f y y ′ ( x , y ) f'_{yy}(x,y) fyy(x,y)
类似地可以定义三阶、四阶、n阶偏导数。
其中,不同自变量求导的高阶偏导数称为混合偏导数。 f x y ′ ( x , y ) f'_{xy}(x,y) fxy(x,y) f y x ′ ( x , y ) f'_{yx}(x,y) fyx(x,y)


1.3 函数的泰勒级数展开

  • 一元函数 f ( x ) f(x) f(x)在点 x k x_k xk处的泰勒展开式为:
    f ( x ) = f ( x k ) + ( x − x k ) f ′ ( x k ) + 1 2 ! ( x − x k ) 2 f ′ ′ ( x k ) + ⋯ + 1 n ! ( x − x k ) n f n ( x k ) + o ( n ) f(x)=f(x_k)+(x-x_k)f'(x_k)+ \frac {1}{2!}(x-x_k)^2f''(x_k)+\cdots+\frac{1}{n!}(x-x_k)^n f^n(x_k)+o(n) f(x)=f(xk)+(xxk)f(xk)+2!1(xxk)2f(xk)++n!1(xxk)nfn(xk)+o(n)

  • 二元函数 f ( x , y ) f(x,y) f(x,y)在点 ( x k , y k ) (x_k,y_k) (xk,yk)处的泰勒展开式为:

f ( x , y ) = f ( x k , y k ) + ( x − x k ) f x ′ ( x k , y k ) + ( y − y k ) f y ′ ( x k , y k ) + 1 2 ! ( x − x k ) 2 f x x ′ ′ ( x k , y k ) + 1 2 ! ( x − x k ) ( y − y k ) f x y ′ ′ ( x k , y k ) + 1 2 ! ( y − y k ) ( x − x k ) f y x ′ ′ ( x k , y k ) + 1 2 ! ( y − y k ) 2 f y y ′ ′ ( x k , y k ) + ⋯ + o ( n ) f(x,y)=f(x_k,y_k)+(x-x_k)f'_x(x_k,y_k)+(y-y_k)f'_y(x_k,y_k)+\\ \frac {1}{2!}(x-x_k)^2 f''_{xx}(x_k,y_k)+\frac {1}{2!}(x-x_k)(y-y_k) f''_{xy}(x_k,y_k)+\\ \frac {1}{2!}(y-y_k)(x-x_k) f''_{yx}(x_k,y_k)+\frac {1}{2!}(y-y_k)^2 f''_{yy}(x_k,y_k)+\\ \cdots+o(n) f(x,y)=f(xk,yk)+(xxk)fx(xk,yk)+(yyk)fy(xk,yk)+2!1(xxk)2fxx(xk,yk)+2!1(xxk)(yyk)fxy(xk,yk)+2!1(yyk)(xxk)fyx(xk,yk)+2!1(yyk)2fyy(xk,yk)++o(n)

  • n元函数 f ( x 1 , x 2 , ⋯   , x n ) f(x^1,x^2,\cdots,x^n) f(x1,x2,,xn)在点 ( x k 1 , x k 2 , ⋯   , x k n ) (x^1_k,x^2_k,\cdots,x^n_k) (xk1,xk2,,xkn)处的泰勒展开为:
    f ( x 1 , x 2 , ⋯   , x n ) = f ( x k 1 , x k 2 , ⋯   , x k n ) + ∑ i = 1 n ( x i − x k i ) f x i ′ ( x k 1 , x k 2 , ⋯   , x k n ) + 1 2 ! ∑ i , j = 1 n ( x i − x k i ) ( x j − x k j ) f x i x j ′ ( x k 1 , x k 2 , ⋯   , x k n ) + ⋯ + o ( n ) f(x^1,x^2,\cdots,x^n)=f(x^1_k,x^2_k,\cdots,x^n_k)+\\ \sum^n_{i=1}(x^i -x^i_k)f'_{x^i}(x^1_k,x^2_k,\cdots,x^n_k)+\\ \frac{1}{2!}\sum^n_{i,j=1}(x^i-x^i_k)(x^j-x^j_k)f'_{x^i x^j}(x^1_k,x^2_k,\cdots,x^n_k)+\\ \cdots+o(n) f(x1,x2,,xn)=f(xk1,xk2,,xkn)+i=1n(xixki)fxi(xk1,xk2,,xkn)+2!1i,j=1n(xixki)(xjxkj)fxixj(xk1,xk2,,xkn)++o(n)

    该式可以表示为矩阵形式,如下:

2. 矩阵形式的泰勒级数展开式

X = [ x 1 , x 2 , ⋯   , x n ] T X=[x^1,x^2,\cdots,x^n]^T X=[x1,x2,,xn]T X k = [ x k 1 , x k 2 , ⋯   , x k n ] T X_k=[x^1_k,x^2_k,\cdots,x^n_k]^T Xk=[xk1,xk2,,xkn]T
则,n元函数 f ( X ) f(X) f(X)在点 X k X_k Xk处的泰勒展开为:
f ( X ) = f ( X k ) + [ ∇ f ( X k ) ] T ( X − X k ) + 1 2 ! ( X − X k ) T H ( X k ) ( X − X k ) + o ( n ) f(X)=f(X_k)+[\nabla f(X_k)]^T(X-X_k)+\\ \frac{1}{2!}(X-X_k)^TH(X_k)(X-X_k)+o(n) f(X)=f(Xk)+[f(Xk)]T(XXk)+2!1(XXk)TH(Xk)(XXk)+o(n)

其中, ∇ f ( X k ) = [ ∂ f ( X k ) ∂ x 1 , ∂ f ( X k ) ∂ x 2 , ⋯   , ∂ f ( X k ) ∂ x n ] T \nabla f(X_k)=[\frac{\partial f(X_k)}{\partial x^1},\frac{\partial f(X_k)}{\partial x^2},\cdots,\frac{\partial f(X_k)}{\partial x^n}]^T f(Xk)=[x1f(Xk),x2f(Xk),,xnf(Xk)]T
称为n元函数 f ( X ) f(X) f(X)在点 X k X_k Xk处的梯度(向量)
H ( X k ) = [ ∂ 2 f ( X k ) ∂ x 1 ∂ x 1 ∂ 2 f ( X k ) ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ( X k ) ∂ x 1 ∂ x 3 ∂ 2 f ( X k ) ∂ x 2 ∂ x 1 ∂ 2 f ( X k ) ∂ x 2 ∂ x 2 ⋯ ∂ 2 f ( X k ) ∂ x 2 ∂ x 3 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ( X k ) ∂ x n ∂ x 1 ∂ 2 f ( X k ) ∂ x n ∂ x 2 ⋯ ∂ 2 f ( X k ) ∂ x n ∂ x 1 ] H(X_k)= \begin{bmatrix} \frac{\partial ^2 f(X_k)}{\partial x^1 \partial x^1} & \frac{\partial ^2 f(X_k)}{\partial x^1 \partial x^2} & \cdots & \frac{\partial ^2 f(X_k)}{\partial x^1 \partial x^3} \\ \frac{\partial ^2 f(X_k)}{\partial x^2 \partial x^1} & \frac{\partial ^2 f(X_k)}{\partial x^2 \partial x^2} & \cdots & \frac{\partial ^2 f(X_k)}{\partial x^2 \partial x^3} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial ^2 f(X_k)}{\partial x^n \partial x^1} & \frac{\partial ^2 f(X_k)}{\partial x^n \partial x^2} & \cdots & \frac{\partial ^2 f(X_k)}{\partial x^n \partial x^1} \end{bmatrix} H(Xk)=x1x12f(Xk)x2x12f(Xk)xnx12f(Xk)x1x22f(Xk)x2x22f(Xk)xnx22f(Xk)x1x32f(Xk)x2x32f(Xk)xnx12f(Xk)


2.1 雅各比矩阵

2.2 海森矩阵

2.3 变量为向量的泰勒级数展开

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值