在AWS Glue中实现缓慢变化维度(SCD)的三种类型

根据缓慢变化维度(SCD)的三种核心类型(类型1、类型2、类型3),以下是基于AWS Glue的实现设计、步骤及测试用例:


一、AWS Glue实现SCD的设计与步骤

1. SCD类型1(覆盖旧值)

设计目标:直接更新目标表中的记录,不保留历史数据。
技术选型

  • 使用AWS Glue ETL作业(PySpark)
  • 目标存储:S3(Parquet格式)或Amazon Redshift
  • 数据比对方式:基于业务键(如customer_id)匹配新旧记录

实现步骤

  1. 数据源准备

    • 源表(Source):实时更新的客户表(如CSV或数据库表)。
    • 目标表(Target):维度表(如dim_customer)。
  2. Glue作业逻辑

    from pyspark.context import SparkContext
    from awsglue.context import GlueContext
    
    sc = SparkContext()
    glueContext = GlueContext(sc)
    
    # 加载源数据和目标数据
    source_df = glueContext.create_dynamic_frame.from_catalog(database="source_db", table_name="customer").toDF()
    target_df = glueContext.create_dynamic_frame.from_catalog(database="target_db", table_name="dim_customer").toDF()
    
    # 合并逻辑:覆盖旧值
    merged_df = target_df.alias("target").join(
        source_df.alias("source"),
        target_df.customer_id == source_df.customer_id,
        "outer"
    ).selectExpr(
        "coalesce(source.customer_id, target.customer_id) as customer_id",
        "source.name as name",  # 直接覆盖
        "source.address as address"  # 直接覆盖
    ).distinct()
    
    # 写入目标表(覆盖模式)
    glueContext.write_dynamic_frame.from_catalog(
        frame=DynamicFrame.fromDF(merged_df, glueContext, "merged_df"),
        database="target_db",
        table_name="dim_customer",
        transformation_ctx="write_target"
    )
    
  3. 目标表结构

    CREATE TABLE dim_customer (
      customer_id INT PRIMARY KEY,
      name STRING,
      address STRING
    );
    

2. SCD类型2(创建新记录)

设计目标:插入新记录并标记历史版本。
技术选型

  • 使用Glue的窗口函数(row_number)跟踪最新记录
  • 新增字段:is_current(布尔值)、start_dateend_date
  • 存储格式:S3 + Parquet(支持ACID事务)

实现步骤

  1. 目标表结构

    CREATE TABLE dim_customer_scd2 (
      customer_sk INT AUTOINCREMENT PRIMARY KEY,  -- 代理键
      customer_id INT,
      name STRING,
      address STRING,
      is_current BOOLEAN,
      start_date DATE,
      end_date DATE
    );
    
  2. Glue作业逻辑

    from pyspark.sql.window import Window
    from pyspark.sql.functions import row_number, lit, current_date, when
    
    # 加载源数据和目标数据
    source_df = glueContext.create_dynamic_frame.from_catalog(database="source_db", table_name="customer").toDF()
    target_df = glueContext.create_dynamic_frame.from_catalog(database="target_db", table_name="dim_customer_scd2").toDF()
    
    # 标记目标表中的旧记录为失效
    target_updated = target_df.withColumn(
        "end_date",
        when(
            (target_df.customer_id.isin(source_df.select("customer_id").collect())) &
            (target_df.is_current == True),
            current_date()
        ).otherwise(target_df.end_date)
    ).withColumn(
        "is_current",
        when(
            (target_df.customer_id.isin(source_df.select("customer_id").collect())) &
            (target_df.is_current == True),
            False
        ).otherwise(target_df.is_current)
    )
    
    # 插入新记录
    new_records = source_df.join(
        target_updated,
        ["customer_id"],
        "left_anti"  # 仅选择源中存在但目标中不存在的记录
    ).select(
        "customer_id",
        "name",
        "address",
        lit(True).alias("is_current"),
        current_date().alias("start_date"),
        lit(None).cast("date").alias("end_date")
    )
    
    # 合并并写入目标表
    final_df = target_updated.unionByName(new_records)
    glueContext.write_dynamic_frame.from_catalog(
        frame=DynamicFrame.fromDF(final_df, glueContext, "final_df"),
        database="target_db",
        table_name="dim_customer_scd2"
    )
    

3. SCD类型3(添加有效日期)

设计目标:维护当前记录和历史记录的有效时间范围。
技术选型

  • 新增字段:valid_fromvalid_to
  • 使用Glue的coalesce处理时间重叠

实现步骤

  1. 目标表结构

    CREATE TABLE dim_customer_scd3 (
      customer_sk INT PRIMARY KEY,
      customer_id INT,
      name STRING,
      address STRING,
      valid_from DATE,
      valid_to DATE
    );
    
  2. Glue作业逻辑

    # 关闭旧记录的valid_to
    target_updated = target_df.withColumn(
        "valid_to",
        when(
            (target_df.customer_id.isin(source_df.select("customer_id").collect())) &
            (target_df.valid_to.isNull()),
            current_date()
        ).otherwise(target_df.valid_to)
    )
    
    # 插入新记录
    new_records = source_df.select(
        "customer_id",
        "name",
        "address",
        current_date().alias("valid_from"),
        lit(None).cast("date").alias("valid_to")
    )
    
    # 合并并写入
    final_df = target_updated.unionByName(new_records)
    glueContext.write_dynamic_frame.from_catalog(...)
    

二、测试用例

通用测试场景
测试场景预期结果
无变化的记录目标表记录保持不变。
新增记录目标表插入新记录(类型2/3新增代理键,类型1直接插入)。
属性值变化类型1覆盖旧值;类型2插入新记录并标记旧记录失效;类型3关闭旧记录有效期。
多次更新同一记录类型2生成多条历史记录;类型3仅保留当前和上一次状态。
类型2专项测试
  1. 历史版本查询

    SELECT * FROM dim_customer_scd2 
    WHERE customer_id = 100 
    ORDER BY start_date DESC;
    

    预期:返回该客户的所有历史地址记录。

  2. 当前标记验证

    SELECT COUNT(*) FROM dim_customer_scd2 
    WHERE customer_id = 100 AND is_current = True;
    

    预期:仅返回1条记录。

类型3专项测试
  1. 时间范围覆盖
    SELECT * FROM dim_customer_scd3 
    WHERE customer_id = 200 
    AND valid_from <= '2023-10-01' 
    AND valid_to >= '2023-10-01';
    
    预期:返回该时间点有效的记录。

三、性能优化建议

  1. 分区策略:按日期或业务键分区目标表(如valid_from)。
  2. 索引优化:在Redshift中为customer_idis_current列创建排序键。
  3. 增量处理:启用Glue Job Bookmark仅处理新增数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值