\documentclass{article}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{CJKutf8}
\begin{document}
\begin{CJK}{UTF8}{gkai}%正文放在此行下与\end{CJK}之间就行
你好, LaTeX!
平方根 $\sqrt{x}$
立方根 $\sqrt[3]{x}$
分数的代码是 $\frac{a}{b}$
求和的代码是 $\sum_{i=1}^{n} i$
积分 $\int_{a}^{b} f(x) dx$
一重积分 $$
\int_{x=0}^3 x^2\ = 9
$$
二重积分号 $\iint$
二重积分 $$
\iint dxdy = S
$$
三重积分号 $\iiint$
三重积分 $$
\iiint dxdydz = V
$$
封闭积分 $\oint$
极限 $\lim_{x \to \infty} f(x)$
乘积 $\prod_{i=1}^{n} a_i$
无穷大 $\infty$
正无穷大: $+\infty$
负无穷大: $-\infty$
圆周率 $\pi$
虚数单位 $i$
指数 $e^{x}$
对数 $\log_{a} b$
绝对值 $|x|$
向量 $\vec{a}$
希腊字母 $\alpha, \beta, \gamma, \Theta$
上标 $x^2$
下标 $x_i$
矩阵:
\begin{equation}
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
\end{equation}
单位矩阵 $$
\begin{bmatrix}
1&0&0 \\
0&1&0 \\
0&0&1 \\
\end{bmatrix}
$$
m×n矩阵 $$
A=\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{bmatrix}
$$
行列式 $$
D=\begin{vmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{vmatrix}
$$
多行公式
\begin{equation}
\begin{split}
C(\mathcal{A},\mathcal{P},\mathcal{F}) & = \sum_{i\in\mathcal{N}-\{0\}} t_{i}^{process}\\
&=\sum_{i\in\mathcal{N}-\{0\}}\left(\sum_{j\in\mathcal{N}}\alpha_{i,j}(t_{i,j}^{offloading}+t_{i,j}^{up}) \right.\\
&\left.+(1-\sum_{j\in\mathcal{N}}\alpha_{i,j})t_{i}^{l}\right)
\end{split}
\end{equation}
角度符号可以写为:$109^\circ 28^\prime 16^{\prime \prime}$
省略号
\ldots
\vdots
加粗符号 \textbf{x}
斜体 \textit{$\Theta$}
行列式的TeX代码是 $\det A$
偏导数 $\frac{\partial f}{\partial x}$
偏微分方程 $\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=-2z$
$$
\frac{\partial u}{\partial t}= h^2 \left( \frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}+ \frac{\partial^2 u}{\partial z^2}\right)
$$
一阶微分方程 $$
\frac{dy}{dx}+P(x)y = Q(x)
\\ \left. \frac{{\rm d}y}{{\rm d}x} \right|_{x=0} = 3x+1
$$
二阶微分方程 $$
y''+py'+qy=f(x)
\\\frac{d^2y}{dx^2}+p\frac{dy}{dx}+qy=f(x)
$$
求导数题目:
设$f(x)=10x^2$,试按定义求 $f'(-1)$。
解:$f'(x)=20x$
$f'(-1)=-20$。
设$f(x)=2x^2 + \ln x$, 试按定义求 $f''(x)$。
解: $f''(x)=(1/x + 4x)'=4 - 1/x^2$。
设$f(x)=(x + 10)^6$,试按定义求 $f'''(2)$。
解: $f'''(x)=(6(10 +x)^5)''=(30(10 + x)^4)'=120(10 +x)^3$,
$f'''(2)=207360$。
设$f''(x)$存在,求函数$y=f(x^2)$的二阶导数$\frac{\partial^2y}{\partial x^2}$。
解: $y'=2xf'(x^2)$,
$y''=2f'(x^2) + 4f''(x^2)x^2$。
基本函数 $$
f(n)=\sum_{i=1}^{n}{n*(n+1)}
$$
$$
x^{y}=(1+{\rm e}^x)^{-2xy}
$$
$$
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.
$$
$$
y(x)=x^3+2x^2+x+1
$$
分段函数 $$
f_n =\begin {cases}
a &\text {if $n=0$} \\
r \cdot f_{n -1} &\text {else}
\end{cases}
$$
齐次方程 $$
\left \{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
求解函数在某一点的切线与法线函数题目:
求曲线$y=\cos x$上点$(\frac{\pi}{3},\frac{1}{2})$处的切线方程和法线方程。
解:$y'|_{x=\frac{\pi}{3}}=(-\sin x)|_{x=\frac{\pi}{3}}=-\frac{\sqrt{3}}{2}$,
故曲线在点$(\frac{\pi}{3},\frac{1}{2})$处的切线方程为:
$y=\frac{1}{2} - \frac{1}{2}\sqrt{3}\left(-\frac{\pi}{3} + x\right)$,
曲线在点$(\frac{\pi}{3},\frac{1}{2})$处的法线方程为:
$y=\frac{1}{2} + \frac{-\frac{\pi}{3} + x}{2\sqrt{3}}$。
古典概型题目:
在5双不同的鞋子中任取4只,则这4只鞋子中至少有2只鞋子配成1对的概率是多少?
解:这是一个古典概型问题。
设$A=$“所取的4只鞋子中至少有2只鞋子配成1对”,则$\overline{A}=$“所Q取的4只鞋子中,没有2只能配成1对”。
首先,在10只鞋子中随机取4只,因此样本点总数$n=\left( \begin{array}{c} 10 \\ 4 \end{array} \right)=210$,又$\overline{A}$可表现为先从5双中取4双,再从每双中各取1只,因此事件A的样本点个数$n_A=\left( \begin{array}{c} 5 \\ 4 \end{array} \right)\left( \begin{array}{c} 2 \\ 1 \end{array} \right)\left( \begin{array}{c} 2 \\ 1 \end{array} \right)\left( \begin{array}{c} 2 \\ 1 \end{array} \right)\left( \begin{array}{c} 2 \\ 1 \end{array} \right)=80$,从而$P(A) =1-P(\overline{A})=1-\frac{80}{210}=\frac{13}{21}$
注1:古典概型的解题关键是计算样本空间的样本点总数n和随机事件A的样本点个数$n_A$。因此,应该先分析完成随机试验和随机事件的先后步骤,并正确计算每个步骤的结果数。在计数过程中恰当地使用“排列”或“组合”。
注2:当求解一个较复杂的事件概率时,常常考虑求它的逆事件,可以简化问题求解。
将红、黑、白3个球放置到4个不同的盒子中去(设盒子足够大,可以容纳所有的球),求下列事件的概率:
(1)3个球都在某一指定的盒子里;
(2)3个球都在某一盒子里;
(3)指定的3个盒子里各有1个球;
(4)3个球在不同的3个盒子里。
解:这是一个古典概型问题。
首先,将3个球放入4个盒子,因此样本点总数$n=4^3=64$。
(1)设A=“3个球都在某一指定的盒子里”,则$P(A)=\frac{1}{64}$;
(2)设B=“3个球都在某一盒子里”,B与A的区别在于:A中盒子已经事先确定了,而B中盒子没有事先确定,因此B比A多了选盒子的过程,事件B的样本点个数$n_B=\left( \begin{array}{c} 4 \\ 1 \end{array} \right)=4$.所以$P(B)=\frac{4}{64}=\frac{1}{16}$;
(3)设C=“指定的3个盒子里各有1个球”,将不同颜色的球放入指定的3个盒子,事件C的样本点个数$n_c=A^3_3= 6$,所以$P(C)=\frac{6}{64}=\frac{3}{32}$;
(4)设D=“3个球在不同的3个盒子里”,D与C的区别在于:D比C多了选盒子的过程,事件D的样本点个数$n_D=A^3_4=24$,所以$P(D)=\frac{24}{64}=\frac{3}{8}$。
决策优化和概率论结合的问题:
小明玩战机游戏。初始积分为2。在游戏进行中,积分会随着时间线性地连续减少(速率为每单位时间段扣除1)。游戏开始后,每隔一个随机时间段(时长为互相独立的参数为1的指数分布),就会有一架敌机出现在屏幕上。当敌机出现时,小明立即进行操作,可以瞬间击落对方,或者瞬间被对方击落。如被敌机击落,则游戏结束。如小明击落敌机,则会获得1.5个积分,并且可以选择在击落该次敌机后立即退出游戏,或者继续游戏。如选择继续游戏,则须等待到下一架敌机出现,中途不能主动退出。游戏的难度不断递增:出现的第n架敌机小明击落对方的概率为$0.85^n$”,被击落的概率为$1-0.85^n$,且与之前的事件独立。在任何时刻,如果积分降到0,则游戏自动结束。
如果游戏中,小明被击落后,其之前的积分保持。那么为了游戏结束时的累积积分的数学期望最大化,小明应在击落第2架敌机时主动结束游戏。
由于小明被击落后积分保持,目标是最大化游戏结束时的累积积分,所以每次击落敌机后,小明可以选择是否继续游戏,关键在于比较继续游戏的期望收益与立即结束的当前积分。
这是一道关于决策优化和概率论结合的问题,解题思路主要围绕“如何最大化小明的累积积分”展开。小明初始积分为2分,积分随时间线性减少(每单位时间减1)。敌机按指数分布随机时间间隔出现,小明可选择击落敌机获得1.5分或被敌机击落导致游戏结束。小明击落敌机的概率随敌机编号n增加而递减(概率为$0.85^n$,被击落概率为$1 - 0.85^n$。
敌机的出现是一个参数为1的泊松点过程(如需避免连续时间随机过程,这里也可用指数分布的无记忆性)。在任意时刻,每进行一个单位时间段,小明减少的积分为1。在击落每架敌机后,小明增加的积分为1.5。在这之后,每进行一个单位时间段,小明击落敌机的期望收益为$1.5(0.85)^n$。(1)在这种情况下,被敌机击落的期望损失为0。那么我们选择最大的n,使得$1.5(0.85)^n>1$,即$n=2$。
通过计算可知,当小明击落第二架敌机后继续游戏的期望收益开始小于当前积分,因此最优策略是击落第二架敌机后立即结束游戏。
假设游戏中,小明被击落后,其之前积累的积分会清零。那么为了结束时的期望积分最大化,小明也会选择一个最优的时间主动结束游戏。请问在游戏结束时(小明主动结束、或积分减到0),最接近游戏结束时小明的整数期望积分是2。
由于小明被击落后积分清零,目标是最大化结束时的期望积分,所以,可以通过计算不同情况下积分的数学期望,发现最优策略是等待第一架敌机出现,将其击落后立即结束游戏,这是因为击落第一架敌机后继续游戏的期望积分增长不足以弥补时间带来的积分损失。
假设击落第n-1架敌机后,小明所拥有的积分为t。如选择继续等待到下一架敌机出现后结束游戏,积分的数学期望为:
$0.85^n \times \int_{0}^t (t +1.5 - x)e^{-x} dx = 0.85^n \times (t + 0.5 \times (1 - e^{-t}))$
当n=1且t≤2时,上式总是大于t。因此小明至少要等到第一架敌机出现。假如小明击落了第一架敌机,那么其手中积分至少为1.5。当n=2 且t≥1.5时,式子总是小于t。因此,假设小明已经击落了第一架敌机,那么选择“立即结束游戏”总是优于“击落第二架敌机后立即结束”。由第一问可知,无论小明现有积分为多少,其最优结束时间都应该不晚于击落第二架敌机。综上可得,小明的最优策略为:等待第一架敌机出现,将其击落后立即结束游戏。在此策略下,小明最终积分的期望应为式子在n=1及t=2时的值,约为2.067,最接近游戏结束时小明的整数期望积分是2。
为了最大化结束时的期望积分,小明应该等待第一架敌机出现,将其击落后立即结束游戏。通过这样逐步分析和计算不同策略下的期望收益,我们可以找到最优的决策方案。
\begin{table}[]
\centering
\caption{我的表格标题}
\label{tab:my_table}
\begin{tabular}{|c|c|c|}
\hline
列1 & 列2 & 列3 \\ \hline
数据1 & 数据2 & 数据3 \\ \hline
数据4 & 数据5 & 数据6 \\ \hline
数据7 & 数据8 & 数据9 \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{常用导数表}
\label{tab:my_table}
\begin{tabular}{|c|c|c|}
\hline
序号 & 数学表达式 & 导数表达式 \\ \hline
1 & $f(x) = C$ & $f'(x) = 0$ \\ \hline
2 & $f(x) = x^n$ & $f'(x) = nx^{n-1}$ \\ \hline
3 & $f(x) = \sin x$ & $f'(x) = \cos x$ \\ \hline
4 & $f(x) = \cos x$ & $f'(x) = -\sin x$ \\ \hline
5 & $f(x) = \tan x$ & $f'(x) = \sec^2 x = \frac{1}{\cos^2 x}$ \\ \hline
6 & $f(x) = \cot x$ & $f'(x) = -\csc^2 x = -\frac{1}{\sin^2 x}$ \\ \hline
7 & $f(x) = \sec x$ & $f'(x) = \sec x \tan x = \frac{\sin x}{\cos^2 x}$ \\ \hline
8 & $f(x) = \csc x$ & $f'(x) = -\csc x \cot x = -\frac{\cos x}{\sin^2 x}$ \\ \hline
9 & $f(x) = \ln x$ & $f'(x) = \frac{1}{x}$ \\ \hline
10 & $f(x) = \ln(ax + b)$ & $f'(x) = \frac{a}{ax + b}$ \\ \hline
11 & $y = \ln[f(x)]$ & $y' = \frac{f'(x)}{f(x)}$ \\ \hline
12 & $f(x) = e^x$ & $f'(x) = e^x$ \\ \hline
13 & $f(x) = a^x$ & $f'(x) = a^x \ln a$ \\ \hline
14 & $f(x) = \log_a x$ & $f'(x) = \frac{1}{x \ln a}$ \\ \hline
15 & $f(x) = \sqrt{x}$ & $f'(x) = \frac{1}{2\sqrt{x}}$ \\ \hline
16 & $f(x) = \frac{1}{x}$ & $f'(x) = -\frac{1}{x^2}$ \\ \hline
17 & $f(x) = \sin(ax + b)$ & $f'(x) = a\cos(ax + b)$ \\ \hline
18 & $f(x) = \cos(ax + b)$ & $f'(x) = -a\sin(ax + b)$ \\ \hline
19 & $f(x) = \tan(ax + b)$ & $f'(x) = a\sec^2(ax + b)$ \\ \hline
20 & $f(x) = e^{ax + b}$ & $f'(x) = ae^{ax + b}$ \\ \hline
21 & $f(x) = (u \cdot v)$ & $f'(x) = u' \cdot v + u \cdot v'$ \\ \hline
22 & $y = f(g(x))$ & $y' = g'(x)f'(g(x))$ \\ \hline
23 & $y = f(g(x))$ & $y'' = g''(x)f'(g(x)) + g'^2(x)f''(g(x))$ \\ \hline
24 & $f(x) = \frac{u}{v}$ & $f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$ \\ \hline
25 & $y = \frac{f'(x)}{f(x)}$ & $y' = \frac{f''(x)f(x) - f'^2(x)}{f^2(x)}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[htbp]
\centering
\caption{希腊字母表}
\begin{tabular}{|c|c|}
\hline
序号 & 希腊字母 \\ \hline
1 & $\alpha$ \\ \hline
2 & $\beta$ \\ \hline
3 & $\gamma$ \\ \hline
4 & $\delta$ \\ \hline
5 & $\epsilon$ 或 $\varepsilon$ \\ \hline
6 & $\zeta$ \\ \hline
7 & $\eta$ \\ \hline
8 & $\theta$ 或 $\vartheta$ \\ \hline
9 & $\iota$ \\ \hline
10 & $\kappa$ \\ \hline
11 & $\lambda$ \\ \hline
12 & $\mu$ \\ \hline
13 & $\nu$ \\ \hline
14 & $\xi$ \\ \hline
15 & $o$ \\ \hline
16 & $\pi$ \\ \hline
17 & $\rho$ \\ \hline
18 & $\sigma$ 或 $\varsigma$ \\ \hline
19 & $\tau$ \\ \hline
20 & $\upsilon$ \\ \hline
21 & $\phi$ 或 $\varphi$ \\ \hline
22 & $\chi$ \\ \hline
23 & $\psi$ \\ \hline
24 & $\omega$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{部分概率统计符号表}
\begin{tabular}{|c|c|p{8cm}|}
\hline
序号 & 符号 & 用途说明 \\ \hline
1 & $P(A)$ & 事件A的概率 \\ \hline
2 & $P(AB)$ & 事件A和事件B同时发生的概率,若事件A与事件B互不相容,则$P(AB) = 0$\\ \hline
3 & $P(A|B)$ & 在事件B发生的条件下,事件A发生的条件概率 \\ \hline
4 & $\overline{A}$ & 事件A的对立事件(非A) \\ \hline
5 & $\overline{A}\overline{B}$ & 事件A不发生且事件B也不发生的情况 \\ \hline
6 & $P(A \cup B)$ & 事件A或事件B至少有一个发生的概率 \\ \hline
7 & $P(A \cap B)$ & 事件A和事件B同时发生的概率 \\ \hline
8 & $\varnothing$ & 空集(没有元素的集合) \\ \hline
9 & $X$ & 随机变量 \\ \hline
10 & $E(X)$ & 随机变量X的期望(均值) \\ \hline
11 & $Var(X)$ & 随机变量X的方差 \\ \hline
12 & $Cov(X,Y)$ & 随机变量X和Y的协方差 \\ \hline
13 & $\rho_{XY}$ & 随机变量X和Y的相关系数 \\ \hline
14 & $\sigma^2$ & 方差的一般表示符号 \\ \hline
15 & $\mu$ & 均值的一般表示符号 \\ \hline
16 & $f(x)$ & 连续型随机变量的概率密度函数 \\ \hline
17 & $F(x)$ & 随机变量的累积分布函数 \\ \hline
18 & $\boldsymbol{\chi}^2$ & 卡方分布 \\ \hline
19 & $t$ & t分布 \\ \hline
20 & $F$ & F分布 \\ \hline
21 & $Beta(a,b)$ & Beta分布 \\ \hline
22 & $Poisson(\lambda)$ & 托塞分布 \\ \hline
23 & $N(\mu,\sigma^2)$ & 正态分布 \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{随机事件运算公式表}
\begin{tabular}{|c|p{6cm}|p{7cm}|}
\hline
序号 & 随机事件运算公式 & 说明 \\ \hline
1 & $A \cup B$ & 事件的并集,表示事件A发生或事件B发生或两者都发生的情况。 \\ \hline
2 & $A \cap B$ & 事件的交集,表示事件A和事件B同时发生的情况。 \\ \hline
3 & $\overline{A}$ & 事件的补集,表示事件A不发生的情况。 \\ \hline
4 & $A - B$ & 事件的差集,表示事件A发生但事件B不发生的情况。 \\ \hline
5 & $A \oplus B$ & 事件的对称差集,表示事件A发生而B不发生,或事件B发生而A不发生的情况。 \\ \hline
6 & $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(B) \cdot P(A|B)$ & 并集的概率公式,用于计算两个事件至少有一个发生的概率。 \\ \hline
7 & $P(A \cap B) = P(A) \cdot P(B|A)$ & 条件概率公式,用于计算两个事件同时发生的概率。 \\ \hline
8 & $P(A \cap B) = P(B) \cdot P(A|B)$ & 条件概率公式的另一种形式,也用于计算两个事件同时发生的概率。 \\ \hline
9 & $P(\overline{A}) = 1 - P(A)$ & 补集的概率公式,表示事件A不发生的概率。 \\ \hline
10 & $P(A \oplus B) = P(A) + P(B) - 2P(A \cap B)$ & 对称差集的概率公式,表示A和B中只有一个发生的概率。 \\ \hline
11 & $P(A\overline{B}) = P(A - B) = P(A) - P(AB)$ & 公式 $P(A\overline{B}) = P(A - B) $表明,事件A发生但B不发生的概率,与事件A中去掉与B同时发生的部分后剩下的部分的概率是相等的。
公式 $P(A\overline{B}) = P(A) - P(AB) $提供了计算 P(A−B) 的具体方法,即先计算事件A发生的总概率,然后从中减去事件A和B同时发生的概率。 \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{概率性质表}
\label{tab:prob_properties}
\begin{tabular}{|c|p{6cm}|p{5cm}|}
\hline
序号 & 概率性质运算公式 & 概率性质运算公式的说明 \\ \hline
1 & $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ & 并集的概率等于各自概率之和减去交集的概率(加法公式) \\ \hline
2 & $P(\overline{A} \cup \overline{B}) = P(\overline{A}\overline{B}) = 1 - P(AB)$ & 事件A和B同时不发生的概率与它们同时发生的概率之间的互补关系 \\ \hline
3 & $P(A \cap B) = P(A) \times P(B|A) = P(B) \times P(A|B)$ & 条件概率与联合概率的关系(乘法公式) \\ \hline
4 & $P(\overline{A}) = 1 - P(A)$ & 某个事件不发生的概率等于1减去该事件发生的概率(补集的概率) \\ \hline
5 & $P(A|B) = \frac{P(A \cap B)}{P(B)}$ & 在B发生的条件下A发生的概率(条件概率) \\ \hline
6 & $P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^{n} P(A_i) - \sum_{i<j} P(A_i \cap A_j) + \sum_{i<j<k} P(A_i \cap A_j \cap A_k) - \dots$ & 任意数量事件的并集的概率(包含-排除原理) \\ \hline
7 & 由于$AB \subset A$,$AB \subset B$,按概率的性质有$P(AB) \leqslant P(A)$ 且$P(AB) \leqslant P(B)$,因此$P(AB) \leqslant \frac{P(A) + P(B)}{2}$ & 两个事件同时发生的概率(即它们的交集的概率)不会超过其中任何一个事件单独发生的概率 \\ \hline
% 你可以继续添加更多的行
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{等可能概型表}
\label{tab:my_label}
\begin{tabular}{|c|p{5cm}|p{7cm}|}
\hline
序号 & 等可能概型公式 & 等可能概型公式说明 \\ \hline
1 & $P(A) = \frac{m}{n}$ & 其中,$A$是某一事件,$m$是该事件包含的基本事件个数,$n$是样本空间中基本事件的总数,且所有基本事件发生的可能性相等。 \\ \hline
2 & $P(A_i) = \frac{1}{n}$ & 当每个基本事件$A_i$发生的概率都相等时,且共有$n$个基本事件时,每个基本事件$A_i$发生的概率为$\frac{1}{n}$。 \\ \hline
% 这里可以添加更多的行
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{条件概率与事件的相互独立性表}
\label{tab:conditional_independence}
\begin{tabular}{|c|c|p{7cm}|}
\hline
序号 & 运算公式 & 说明 \\ \hline
1 & $P(A|B) = \frac{P(A \cap B)}{P(B)}$ & 条件概率的定义,当$P(B) > 0$ \\ \hline
2 & $P(A \cap B) = P(A) \cdot P(B|A)$ & 条件概率的另一种形式 \\ \hline
3 & $A \perp B$ 或 $P(A \cap B) = P(A)P(B)$ & 事件A和B相互独立 \\ \hline
4 & $P(A|B) = P(A)$ & 当事件B发生时,事件A发生的概率不变,即A、B独立 \\ \hline
5 & $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$ & 条件概率链式法则 \\ \hline
6 & $A \perp B \text{ 且 } B \perp C \nRightarrow A \perp C$ & 独立性的非传递性 \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\caption{全概率公式与贝叶斯公式表}
\begin{tabular}{|c|c|p{7cm}|}
\hline
序号 & 全概率公式与贝叶斯公式 & 说明 \\ \hline
1 & $P(A) = \sum_{i=1}^{n} P(B_i) P(A | B_i)$ & 全概率公式,用于计算事件A发生的概率,其中$B_1, B_2, ..., B_n$是完备事件组,且$P(B_i) > 0$ \\ \hline
2 & $P(B_i | A) = \frac{P(B_i) P(A | B_i)}{\sum_{j=1}^{n} P(B_j) P(A | B_j)}$ & 贝叶斯公式,用于计算在事件A已经发生的条件下,事件$B_i$发生的条件概率 \\ \hline
\end{tabular}
\label{tab:probability_formulas}
\end{table}
\end{CJK}
\end{document}