给定图 G G G,我们称 σ \sigma σ是它的一个合法 q q q-染色,如果 σ \sigma σ赋给每个点 q q q个颜色中的一个,并且没有任何一条边的两个端点是同色的。给定一个染色 σ \sigma σ和一个顶点 v ∈ V v \in V v∈V,令 L σ ( v ) L_{\sigma}(v) Lσ(v)为点 v v v处可用的颜色的集合,即在染色 σ \sigma σ下没有出现在 v v v的邻居的颜色集合。
证明存在一个正整数 d 0 ≥ 1 d_0 \geq 1 d0≥1使得对任意整数 d ≥ d 0 d \geq d_0 d≥d0,以下命题成立:对任意的没有三角形且最大度数为 d d d的图 G = ( V , E ) G = (V, E) G=(V,E),以及它的任意一个顶点 v ∈ V v \in V v∈V,
E σ [ ∣ L G ( v ) ∣ ] ≥ d / 3 , \mathbb{E}_{\sigma}[|L_G(v)|] \geq d/3, Eσ[∣LG(v)∣]≥d/3,
这里 σ \sigma σ是一个符合均匀分布的随机合法 d d d-染色。
证:
我们希望证明在无三角形的图 G G G中,任意顶点 v v v的邻居集合 N ( v ) N(v) N(v)的颜色数量 ∣ L σ ( v ) ∣ |L_{\sigma}(v)| ∣Lσ(v)∣的期望值与顶点的度数 d d d之间的关系。
1. 定义和设定
设 d = deg ( v ) d = \deg(v) d=deg(v),表示顶点 v v v