通过此方案,可高效检测数据有效性并提供修正建议,结合Azure与OpenAI能力实现自动化数据治理。
技术栈
- 数据存储与计算:
- Azure Synapse Analytics:存储原始数据与检测结果。
- AI模型服务:
- OpenAI GPT-4:验证行政区域组合是否存在,并提供修正建议。
- 编程语言与工具:
- Python:核心逻辑开发(数据读取、API调用、结果更新)。
- pyodbc:连接Azure Synapse SQL池。
- OpenAI Python SDK:调用GPT-4模型。
- 部署与调度:
- Azure Functions/Synapse Notebooks:执行Python脚本。
- Azure Key Vault:安全存储API密钥和数据库凭据。
- 数据处理管道:
- Azure Data Factory/Synapse Pipelines:协调数据流程(可选)。
实现流程
-
数据表准备:
- 在Azure Synapse表中添加以下字段:
ALTER TABLE Locations ADD IsValid BIT NULL, -- 检测结果(1=有效,0=无效) Suggestion NVARCHAR(500), -- 修正建议 IsProcessed BIT DEFAULT 0 -- 标记是否已处理
- 在Azure Synapse表中添加以下字段:
-
Python脚本核心逻辑:
- 连接数据库:读取待处理数据。
- 调用OpenAI API:验证每条记录的行政区域有效性。
- 更新结果:将检测结果和修正建议写回数据库。
-
部署与调度:
- 将脚本部署至Azure Functions(定时触发)或通过Synapse Notebooks运行。
关键Python代码
import pyodbc
import openai
import json
import os
from azure.keyvault.secrets import</