import pandas as pd
import psycopg2
from psycopg2 import sql
# 连接Redshift
conn = psycopg2.connect(
host='your-cluster.endpoint.redshift.amazonaws.com',
port=5439,
dbname='dev',
user='admin',
password='your-password'
)
# 权限检查函数
def check_redshift_permissions(conn):
"""获取所有权限信息"""
permissions = {
'table_level': [],
'column_level': [],
'row_level': [],
'data_masking': []
}
with conn.cursor() as cur:
# 获取表级权限
cur.execute("""
SELECT grantee, table_schema, table_name, privilege_type
FROM information_schema.table_privileges
WHERE grantee != 'PUBLIC'
""")
permissions['table_level'] = cur.fetchall()
# 获取列级权限
cur.execute("""
SELECT grantee, table_schema, table_name, column_name, privilege_type
FROM information_schema.column_privileges
""")
permissions['column_level'] = cur.fetchall()
# 获取行级权限(基于视图定义)
cur.execute("""
SELECT viewname, definition
FROM pg_views
WHERE schemaname NOT IN ('pg_catalog', 'information_schema')
""")
for view in cur.fetchall():
if ' WHERE ' in view[1].upper():
permissions['row_level'].append((
view[0],
view[1].split('WHERE')[1].strip()
))
# 获取数据掩码函数
cur.execute("""
SELECT proname, prosrc
FROM pg_proc
WHERE proname LIKE 'mask%'
OR proname LIKE 'dynamic_mask%'
""")
permissions['data_masking'] = cur.fetchall()
return permissions
# 获取权限数据
permissions = check_redshift_permissions(conn)
# 构建自然语言描述
permission_desc = []
# 表级权限处理
table_df = pd.DataFrame(permissions['table_level'],
columns=['角色', 'schema', '表名', '权限类型'])
for _, row in table_df.iterrows():
desc = f"角色 {row['角色']} 在表 {row['schema']}.{row['表名']} 上拥有 {row['权限类型']} 权限"
sql_stmt = f"GRANT {row['权限类型']} ON {row['schema']}.{row['表名']} TO {row['角色']};"
permission_desc.append(('表级权限', desc, sql_stmt))
# 列级权限处理
column_df = pd.DataFrame(permissions['column_level'],
columns=['角色', 'schema', '表名', '列名', '权限类型'])
for _, row in column_df.iterrows():
desc = f"角色 {row['角色']} 在表 {row['schema']}.{row['表名']} 的 {row['列名']} 列上拥有 {row['权限类型']} 权限"
sql_stmt = f"GRANT {row['权限类型']}({row['列名']}) ON {row['schema']}.{row['表名']} TO {row['角色']};"
permission_desc.append(('列级权限', desc, sql_stmt))
# 行级权限处理
for view, condition in permissions['row_level']:
desc = f"视图 {view} 实施了行级过滤,条件: {condition.split('/*')[0].strip()}"
sql_stmt = f"CREATE VIEW {view} AS SELECT ... WHERE {condition};" # 需要根据实际视图定义补充
permission_desc.append(('行级权限', desc, sql_stmt))
# 数据掩码处理
for func_name, func_def in permissions['data_masking']:
desc = f"数据掩码函数 {func_name} 实现规则: {func_def[:100]}..."
sql_stmt = f"CREATE FUNCTION {func_name} ... \n{func_def};"
permission_desc.append(('数据掩码', desc, sql_stmt))
# 打印结果
df = pd.DataFrame(permission_desc, columns=['权限类型', '描述', 'SQL示例'])
print("权限描述:")
print(df[['权限类型', '描述']].to_markdown(index=False))
print("\n对应SQL语句示例:")
print(df[['权限类型', 'SQL示例']].to_markdown(index=False))
conn.close()
输出结果说明:
权限描述示例:
权限类型 | 描述 |
---|---|
表级权限 | 角色 sales_dept 在表 sales_data.orders 上拥有 SELECT 权限 |
列级权限 | 角色 hr_dept 在表 hr.employees 的 salary 列上拥有 SELECT 权限 |
行级权限 | 视图 sales_apac_view 实施了行级过滤,条件: region = ‘APAC’ |
数据掩码 | 数据掩码函数 mask_ssn 实现规则: CASE WHEN … |
对应SQL语句示例:
权限类型 | SQL示例 |
---|---|
表级权限 | GRANT SELECT ON sales_data.orders TO sales_dept; |
列级权限 | GRANT SELECT(salary) ON hr.employees TO hr_dept; |
行级权限 | CREATE VIEW sales_apac_view AS SELECT … WHERE region = ‘APAC’; |
数据掩码 | CREATE FUNCTION mask_ssn … |
完整权限控制SQL生成模板:
-- 角色体系
CREATE ROLE sales_dept;
CREATE ROLE hr_dept;
-- 表级权限
GRANT SELECT ON TABLE sales_data.* TO sales_dept;
GRANT USAGE ON SCHEMA hr TO hr_dept;
-- 列级权限
CREATE VIEW hr_limited_view AS
SELECT employee_id, name, department,
CASE
WHEN CURRENT_USER = 'hr_director' THEN salary
ELSE NULL
END AS salary
FROM employees;
GRANT SELECT ON hr_limited_view TO hr_dept;
-- 行级权限
CREATE VIEW sales_region_view AS
SELECT * FROM orders
WHERE region = CURRENT_SCHEMA();
-- 动态数据掩码
CREATE FUNCTION mask_email(email varchar) RETURNS varchar AS $$
BEGIN
RETURN regexp_replace(email, '(.)(.*)@', '\1***@');
END;
$$ LANGUAGE plpgsql;
CREATE VIEW customer_masked_view AS
SELECT
customer_id,
mask_email(email) AS email,
LEFT(phone, 3) || '****' AS phone
FROM customers;
-- 权限组合
GRANT sales_dept TO user1;
GRANT hr_dept TO user2;
各权限类型说明:
-
表级权限:
- 控制对整张表的访问
- 典型操作:SELECT/INSERT/UPDATE/DELETE
- 最佳实践:通过角色授权,避免直接授予用户
-
列级权限:
- 通过创建受限视图实现
- 使用CASE语句动态控制列可见性
- 配合列加密保护敏感数据
-
行级权限:
- 使用视图WHERE子句过滤数据
- 动态条件:CURRENT_USER/SESSION变量
- 可结合安全策略(Security Policy)
-
数据掩码:
- 使用自定义函数实现动态脱敏
- 支持条件掩码(根据用户角色不同显示不同数据)
- 常用方法:正则替换、数值模糊、部分隐藏
权限管理建议:
-
使用三层角色体系:
-- 组织级角色 CREATE ROLE org_analyst; -- 部门角色 CREATE ROLE dept_finance; -- 功能角色 CREATE ROLE sensitive_data_access; GRANT sensitive_data_access TO dept_finance; GRANT dept_finance TO org_analyst;
-
定期审计脚本:
-- 检查权限分布 SELECT * FROM svv_user_grants; -- 查看列权限 SELECT * FROM svv_column_privileges; -- 审计数据访问 SELECT * FROM svl_userlog;
-
自动化清理:
# 自动撤销过期权限示例 def revoke_expired_permissions(): expired_users = query_db("SELECT user_name FROM expired_users") for user in expired_users: execute_sql(f"REVOKE ALL PRIVILEGES ON ALL TABLES FROM {user}")