可行加权最小二乘法_Python-最小二乘法曲线拟合

本文介绍了最小二乘法的原理,并通过Python的`scipy.optimize.leastsq()`和`curve_fit()`函数进行曲线拟合,包括一元二次方程的拟合和多项式拟合,展示了如何获取最佳拟合参数。
摘要由CSDN通过智能技术生成

行文思路:

  • 最小二乘法原理介绍
  • 利用 leastsq() 函数进行最小二乘法拟合
  • 拟合注意事项
  • 利用curve_fit 进行最小二乘法拟合
  • 总结:
  • 参考文献
  • 实现代码

一,最小二乘法拟合

最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。优化是找到最小值或等式的数值解的问题。而线性回归就是要求样本回归函数尽可能好地拟合目标函数值,也就是说,这条直线应该尽可能的处于样本数据的中心位置。因此,选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。

假设有一组实验数据(xi,yi ), 事先知道它们之间应该满足某函数关系yi=f(xi),通过这些已知信息,需要确定函数f的一些参数。例如,如果函数f是线性函数f(x)=kx+b, 那么参数 k和b就是需要确定的值。

如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面的函数S的值最小:

当误差最小的时候可以理解为此时的系数为最佳的拟合状态。

scipy.optimization 子模块提供了函数最小值(标量或多维)、曲线拟合和寻找等式的根的有用算法。在optimize模块中可以使用 leastsq() 对数据进行最小二乘拟合计算。leastsq() 函数传入误差计算函数和初始值,该初始值将作为误差计算函数的第一个参数传入。计算的结果是一个包含两个元素的元组,第一个元素是一个数组,表示拟合后的参数;第二个元素如果等于1、2、3、4中的其中一个整数&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值