数学分析中的基本定理

1.冯诺依曼极小极大定理

\begin{Example}
\[\sum _ { k = 1 } ^ { \infty } \frac { \log ( k ) } { k ^ { 2 } } = - \frac { 1 } { 6 } \pi ^ { 2 } ( - 12 \log ( A ) + \gamma + \log ( 2 ) + \log ( \pi ) ),\]
其中$A$是Glaisher-Kinkelin Constant.
\end{Example}
\begin{Proof}

\end{Proof}

\begin{Example}
设二元函数$f(x,y)$在正方形区域$[0,1]\times [0,1]$上连续.记$J=[0,1]$.
\begin{enumerate}
\item 试比较$\inf_{y\in J}\sup_{x\in J}f(x,y)$与$\sup_{x\in J}\inf_{y\in J}f(x,y)$的大小并证明之;

\item 给出并证明使等式
\[\inf_{y\in J}\sup_{x\in J}f(x,y)=\sup_{x\in J}\inf_{y\in J}f(x,y)\tag{$\ast$}\]
成立的(你认为最好的)充分条件.
\end{enumerate}
\end{Example}
\begin{Proof}
对任意固定的$y\in J$,有
\[\sup_{x\in J}f(x,y)\geq f(x,y)\geq \inf_{y\in J}f(x,y),\quad \forall x\in J,\]
所以
\[\sup_{x\in J}f(x,y)\geq \sup_{x\in J}\inf_{y\in J}f(x,y).\]
由$y$的任意性可知
\[\inf_{y\in J}\sup_{x\in J}f(x,y)\geq\sup_{x\in J}\inf_{y\in J}f(x,y).\]

若$f(x,y)\equiv$常数,则等式($\ast$)显然成立.但这种情况太平凡.一个更有意义的条件是$f(x,y)$关于其中某一变量单调.不妨考察$f(x,y)$对变量$x$单调递增的情形.

上面已证明了($\ast$)式左端$\geq$右端,现证左端$\leq$右端.因$f(x,y)$对$x$单调递增,所以固定$y\in J$有
\[\sup_{x\in J}f(x,y)=f(1,y).\]
由于$f(1,y)$关于$y$在区间$J$上连续,因此存在$y_0\in J$使得
\[f(1,y_0)=\inf_{y\in J}f(1,y)=\inf_{y\in J}\sup_{x\in J}f(x,y),\]
但\[f(1,y_0)=\inf_{y\in J}f(1,y)=\sup_{x\in J}\left[\inf_{y\in J}f(x,y)\right],\]
因此
\[\inf_{y\in J}\sup_{x\in J}f(x,y)\leq \sup_{x\in J}\inf_{y\in J}f(x,y).\]
得证.
\end{Proof}

 

 

\begin{Example}
(Lyapunov不等式)设$f(x)$在闭区间$[a,b]$有连续的二阶导数,且$f(a)=f(b)=0$,当$x\in (a,b)$时, $f(x)\neq 0$,证明:
\[\int _ { a } ^ { b } \left| \frac { f ^ { \prime \prime } ( x ) } { f ( x ) } \right| \mathrm{d} x \geq \frac { 4 } { b - a }.\]
\end{Example}
\begin{Proof}
由于
\[\int _ { a } ^ { b } \left| \frac { f ^ { \prime \prime } ( x ) } { f ( x ) } \right| \mathrm { d } x \geq \frac { \int _ { a } ^ { b } \left| f '' ( x ) \right| \mathrm { d } x } {\displaystyle \max _ { a \leq x < b } | f ( x ) | },\]
故只需证
\[\int _ { a } ^ { b } \left| f'' ( x ) \right| \mathrm { d } x \geq \frac { 4 } { b - a } \max _ { a \leq x \leq b } | f ( x ) | = \frac { 4 } { b - a } \left| f \left( x _ { 0 } \right) \right|,\]
$x_0\neq a,b$,对$f(x)$在$[a,x_0]$和$[x_0,b]$分别用拉格朗日中值定理,有
\begin{align*}
f \left( x _ { 0 } \right) - f ( a ) &= f ^ { \prime } \left( \xi _ { 1 } \right) \left( x _ { 0 } - a \right), \\
f ( b ) - f \left( x _ { 0 } \right) &= f ^ { \prime } \left( \xi _ { 2 } \right) \left( b - x _ { 0 } \right), \end{align*}

\begin{align*}
\int _ { a } ^ { b } \left| f ^ { \prime \prime } ( x ) \right| \mathrm { d } x &\geq \int _ { \xi _ { 1 } } ^ { \xi _ { 2 } } \left| f ^ { \prime \prime } ( x ) \right| \mathrm { d } x\\
&\geq \left| \int _ { \xi _ { 1 } } ^ { \xi _ { 2 } } f ^ { \prime \prime } ( x ) \mathrm { d } x \right| = \left| f ^ { \prime } \left( \xi _ { 2 } \right) - f ^ { \prime } \left( \xi _ { 1 } \right) \right| = \left| \frac { - f \left( x _ { 0 } \right) } { b - x _ { 0 } } - \frac { f \left( x _ { 0 } \right) } { x _ { 0 } - a } \right|\\
&= \left| f \left( x _ { 0 } \right) \right| \frac { b - a } { \left( b - x _ { 0 } \right) \left( x _ { 0 } - a \right) },
\end{align*}
而$\left( b - x _ { 0 } \right) \left( x _ { 0 } - a \right) \leq \frac { ( b - a ) ^ { 2 } } { 4 }$,因此
\[\int _ { a } ^ { b } \left| f ^ { \prime \prime } ( x ) \right| \mathrm { d } x \geq f \left( x _ { 0 } \right) \frac { 4 } { b - a }.\]
\end{Proof}

\begin{Example}
\[\sum _ { k = 1 } ^ { \infty } \frac { \log ( k ) } { k ^ { 2 } } = - \frac { 1 } { 6 } \pi ^ { 2 } ( - 12 \log ( A ) + \gamma + \log ( 2 ) + \log ( \pi ) ),\]
其中$A$是Glaisher-Kinkelin Constant.
\end{Example}
\begin{Proof}

\end{Proof}

 

2.

\begin{Example}
(周民强第三册P15)试证明下列命题:
\begin{enumerate}
\item (2019年浙江大学考研)设$f:\mathbb{R}^2\to\mathbb{R}^1$满足:
\begin{enumerate}
\item $f(x,y)$是单变量连续的;
\item 若$K\subset\mathbb{R}^2$是有界闭集,则$f(K)\subset \mathbb{R}^1$是有界闭集,
\end{enumerate}
证明: $f(x,y)$在$\mathbb{R}^2$上连续.

\item 设$f:\mathbb{R}^2\to\mathbb{R}^1$满足:
\begin{enumerate}
\item 若$K\subset\mathbb{R}^2$是有界闭集,则$f(K)\subset \mathbb{R}^1$是有界闭集,

\item 若$\{K_n\}$是$\mathbb{R}^2$中的有界闭集列,且有
\[f \left( \bigcap_{n=1}^{ \infty } K _ { n } \right) = \bigcap _ { n = 1 } ^ { \infty } f \left( K _ { n } \right) , \quad K _ { n } \supset K _ { n + 1 }\quad (n\in\mathbb{N}),\]
\end{enumerate}
证明: $f(x,y)$在$\mathbb{R}^2$上连续.

\item 设$F_1,F_2$是$\mathbb{R}^n$中两个互不相交的非空闭集,则存在$f\in C(\mathbb{R}^n)$,使得
\begin{enumerate}
\item $0\leq f(\boldsymbol{X})\leq 1\, (\boldsymbol{X}\in \mathbb{R}^n)$.

\item $F _ { 1 } = \left\{ \boldsymbol { X } : f ( \boldsymbol { X } ) = 1 \right\} ; F _ { 2 } = \left\{ \boldsymbol { X }: f ( \boldsymbol { X } ) = 0 \right\}$.
\end{enumerate}
\end{enumerate}
\end{Example}
\begin{Proof}
\begin{enumerate}
\item 只需指出$f$在$(0,0)$处连续即可(一般情形作变量替换),且不妨假定$f(0,0)=0$ (否则,加一个常数).

反证法.假定$f$在$(0,0)$处不连续,则存在$\varepsilon_0>0$,以及点列$\{(x_n,y_n)\}:(x_n,y_n)\to (0,0)\, (n\to\infty)$,使得$|f(x_n,y_n)|\geq \varepsilon_0\,(n\in\mathbb{N})$.

根据$f$对变量$x$的连续性可知,存在$\delta >0$,使得$|f(x,0)|<\frac{\varepsilon}{2}\,(|x|<\delta)$.由此知存在$N$,使得$|x_n|<\delta \,(n\geq N)$.从而有$|f(x_n,0)| <\frac{\varepsilon}{2}\,(n\geq N)$.

取定$n\geq N$,注意到$f(x_n,y)$对$y$连续,故依中值定理知,存在$y'_n:$使得$|f(x_n,y'_n)|=\frac{n\varepsilon_0}{n+1}$.由于$y_n\to 0\, (n\to\infty)$,故$y'_n\to 0\, (n\to\infty)$.因此, $K=\{(x_n,y'_n):n\geq N\}\cup \{(0,0)\}$是有界闭集.根据题设, $f(K)$是有界闭集.但是,点集
\[f ( K ) = \left\{ \frac{n \varepsilon _ { 0 }} {n + 1}: n \geq N \right\} \cup \{ 0 \}\]
不包含极限点$x=\varepsilon_0$,导致矛盾.证毕.


\item 设$\boldsymbol{X}_0=(x_0,y_0)\in\mathbb{R}^2$,令$z_0=f(x_0,y_0)$,则对任给$\varepsilon>0$,作区间$I_\varepsilon=(z_0-\varepsilon,z_0+\varepsilon)$以及闭球列$K_n=\overline{B}(\boldsymbol{X} _0,1/n)\,(n\in \mathbb{N})$,由条件可知$\bigcap _ { n = 1 } ^ { \infty } f \left( K _ { n } \right)=\{f(\boldsymbol{X} _0)\}$.
因为$\left\{ \left( \mathbf { R } ^ { 1 } \backslash I _ { \varepsilon } \right) \cap f \left( K _ { n } \right) \right\}$是递减有界闭集列,且其交集为空集,所以存在$n_0$,使得
\[\left( \mathbf { R } ^ { 1 } \backslash I _ { \varepsilon } \right) \cap f \left( K _ { n_0 } \right)=\emptyset.\]
这说明
\[\left| f ( \boldsymbol { X } ) - f \left( \mathbf { X } _ { 0 } \right) \right| < \varepsilon \left( \left\| \mathbf { X } - \boldsymbol { X } _ { 0 } \right\| < 1 / n _ { 0 } \right),\]
即$f$在$(x_0,y_0)$处连续.

\item 函数
\[f ( \mathbf { X } ) = \frac{d \left( \mathbf { X } , F _ { 2 } \right)}{\left[ d \left( \mathbf { X } , F _ { 1 } \right) + d \left( \mathbf { X } , F _ { 2 } \right) \right]}\]
即为所求.
\end{enumerate}
\end{Proof}

\begin{Example}
设$x_i>0\,(i=1,2,\cdots,n)$,求证
\[( n - 1 ) \left( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + \cdots + x _ { n } ^ { 2 } \right) + n \sqrt [ n ] { x _ { 1 } ^ { 2 } x _ { 2 } ^ { 2 } \cdots x _ { n } ^ { 2 } } \geq \left( x _ { 1 } + x _ { 2 } + \cdots + x _ { n } \right) ^ { 2 }.\]
\end{Example}
\begin{Proof}

\end{Proof}

\begin{Example}
设三个实数列$\{a_n\},\{b_n\},\{c_n\}$满足: $\sum_{i=1}^{n}a_ib_i=0$,求证:
\[\left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } \right) \left( \sum _ { i = 1 } ^ { n } c _ { i } ^ { 2 } \right) \left( \sum _ { i = 1 } ^ { n } b _ { i } ^ { 2 } \right) \left( \sum _ { i = 1 } ^ { n } c _ { i } ^ { 2 } \right) \geq 4 \left( \sum _ { i = 1 } ^ { n } a _ { i } c _ { i } \right) ^ { 2 } \left( \sum _ { i = 1 } ^ { n } b _ { i } c _ { i } \right) ^ { 2 }.\]
\end{Example}
\begin{Proof}

\end{Proof}

\begin{Example}
设$a_i,b_i\in\mathbb{R},n\geq 2$,求证
\[\left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } \right) \left( \sum _ { i = 1 } ^ { n } b _ { i } ^ { 2 } \right) + \left( \sum _ { i = 1 } ^ { n } a _ { i } b _ { i } \right) ^ { 2 } \geq \sqrt { \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 4 } \right) \left( \sum _ { i = 1 } ^ { n } b _ { i } ^ { 4 } \right) } + \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } b _ { i } ^ { 2 }.\]
\end{Example}
\begin{Proof}

\end{Proof}

 

\begin{Example}
给定正整数$1\leq k\leq n$,非负实数$x_1,x_2,\cdots,x_n$满足$x_1+x_2+\cdots+x_n=1$,试求
\[X = x _ { 1 } x _ { 2 } \cdots x _ { k } + x _ { 2 } x _ { 3 } \cdots x _ { k + 1 } + \cdots + x _ { n - k + 1 } x _ { n - k + 2 } \cdots x _ { n }\]
的最大可能值.
\end{Example}
\begin{Proof}

\end{Proof}

\begin{Example}

\begin{align*}
\sum _ { a = 1 } ^ { \infty } \sum _ { b = 1 } ^ { \infty } \sum _ { c = 1 } ^ { \infty } \frac { a b ( 3 a + c ) } { 4 ^ { a + b + c } ( a + b ) ( b + c ) ( c + a ) } .
\end{align*}
\end{Example}
\begin{Proof}
\begin{align*}
\sum _ { a = 1 } ^ { \infty } \sum _ { b = 1 } ^ { \infty } \sum _ { c = 1 } ^ { \infty } \frac { a b ( 3 a + c ) } { 4 ^ { a + b + c } ( a + b ) ( b + c ) ( c + a ) } \\ = \frac { 1 } { 2 } \sum _ { a = 1 } ^ { \infty } \sum _ { b = 1 } ^ { \infty } \sum _ { c = 1 } ^ { \infty } \frac { 1 } { 4 ^ { a + b + c } } = \frac { 1 } { 54 }.
\end{align*}
\end{Proof}

\[\prod _ { n = 0 } ^ { \infty } \frac { ( 4 n + 3 ) ^ { \frac { 1 } { 4 n + 3 } } } { ( 4 n + 1 ) ^ { \frac { 1 } { 4 n + 1 } } } = \frac { 2 ^ { \pi / 2 } e ^ { \gamma \pi / 4 } \pi ^ { 3 \pi / 4 } } { \Gamma ^ { \pi } ( 1 / 4 ) }\]


\[\frac { 1 } { \gamma } \lim _ { x \rightarrow 0 } \ln \sqrt [ x ] { x ! } = ?\]

\[\lim _ { x \rightarrow 2 } \left( \frac { \pi \ln | 2 \sin \pi x | } { 2 \sinh ^ { 2 } \pi x } - \frac { \pi \ln \left| 16 - x ^ { 4 } \right| } { 2 \sinh ^ { 2 } 2 \pi } \right) = \frac { A \pi \ln B \pi - \ln C } { D \sinh ^ { E } F \pi }\]

\begin{Example}
设$a_i\in\mathbb{R},i=1,2,\cdots,n,n\geq 3$.已知$\sum_{i=1}^{n}a_i=0$.求证
\[( n - 2 ) ^ { 2 } \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } \right) ^ { 3 } \geq n ( n - 1 ) \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 3 } \right) ^ { 2 }.\]
\end{Example}
\begin{Proof}
设$k>0$,记$\sum_{i=1}^{a_i^2}=k^2$.根据柯西不等式
\[k ^ { 2 } - a _ { n } ^ { 2 } = \sum _ { i = 1 } ^ { n - 1 } a _ { i } ^ { 2 } \geq \frac { 1 } { n - 1 } \left( \sum _ { i = 1 } ^ { n - 1 } a _ { i } \right) ^ { 2 } = \frac { 1 } { n - 1 } \left( - a _ { n } \right) ^ { 2 } = \frac { a _ { n } ^ { 2 } } { n - 1 }.\]
\[\Rightarrow ( n - 1 ) \left( k ^ { 2 } - a _ { n } ^ { 2 } \right) \geq a _ { n } ^ { 2 } \Leftrightarrow ( n - 1 ) k ^ { 2 } \geq n a _ { n } ^ { 2 } \Rightarrow \sqrt { \frac { n - 1 } { n } } k \geq \left| a _ { n } \right|,\]
故满足条件$\sum_ {i=1}^{n}a_i=0,\sum_ {i=1}^{n}a_i^2=k^2$,则
\[a _ { i } \in \left[ - \sqrt { \frac { n - 1 } { n } } k , \sqrt { \frac { n - 1 } { n } } k \right] .\]
因此有
\[\left( a _ { i } - \sqrt { \frac { n - 1 } { n } } k \right) \left( a _ { i } + \frac { k } { \sqrt { n ( n - 1 ) } } \right) ^ { 2 } \leq 0,\]
展开整理为
\[a _ { i } ^ { 3 } \leq \frac { ( n - 3 ) k } { \sqrt { n ( n - 1 ) } } a _ { i } ^ { 2 } + \frac { ( 2 n - 3 ) k ^ { 2 } } { n ( n - 1 ) } a _ { i } + \frac { k ^ { 3 } } { n \sqrt { n ( n - 1 ) } },\]
取和得
\begin{align*}
\sum _ { i = 1 } ^ { n } a _ { i } ^ { 3 } &\leq \frac { ( n - 3 ) k } { \sqrt { n ( n - 1 ) } } \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } + \frac { ( 2 n - 3 ) k ^ { 2 } } { n ( n - 1 ) } \sum _ { i = 1 } ^ { n } a _ { i } + \frac { k ^ { 3 } } { \sqrt { n ( n - 1 ) } } \\
&= \frac { ( n - 3 ) k } { \sqrt { n ( n - 1 ) } } \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } + \frac { k } { \sqrt { n ( n - 1 ) } } \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } = \frac { ( n - 2 ) } { \sqrt { n ( n - 1 ) } } \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } \right) ^ { \frac { 3 } { 2 } }.
\end{align*}
上式两边平方得
\[n ( n - 1 ) \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 3 } \right) ^ { 2 } \leq ( n - 2 ) ^ { 2 } \left( \sum _ { i = 1 } ^ { n } a _ { i } ^ { 2 } \right) ^ { 3 }.\]
当前$n-1$个数为$\frac { - k } { \sqrt { n ( n - 1 ) } }$时,最后一个数为$\sqrt { \frac { n - 1 } { n } } k$时,取等号成立.
\end{Proof}

\begin{Example}
设$a_i\in\mathbb{R},i=1,2,\cdots,n$.已知$\sum_{i=1}^{n}a_i=0,\sum_ {i=1}^{n}a_i^2=n^2-n$.求$\sum_ {i=1}^{n}a_i^3$的最大值.
\end{Example}
\begin{Proof}
在定理中,令$\sum_ {i=1}^{n}a_i^2=n^2-n$,即得
\[\sum_ {i=1}^{n}a_i^3=n(n-1)(n-2).\]
当$a_1=a_2=\cdots=a_{n-1}=-1,a_n=n-1$时, $\sum_ {i=1}^{n}a_i^3$取得最大值$n(n-1)(n-2)$.
\end{Proof}

\begin{Example}
(郭新华—2019年春季HMMT数学竞赛(团体赛)三角问题)对任意角$0<\theta<\pi/2$,证明
\[0 < \sin \theta + \cos \theta + \tan \theta + \cot \theta - \sec \theta - \csc \theta < 1.\]
\end{Example}
\begin{Proof}
因为$0<\theta<\pi/2$,令
\[\cos \theta = x , \quad \sin \theta = y , \quad x ^ { 2 } + y ^ { 2 } = 1,\]
则$x+y=1$,以及$1\geq 2xy,\frac{1}{xy}\geq 2>1$,所以
\begin{align*}
&\sin \theta + \cos \theta + \tan \theta + \cot \theta - \sec \theta - \csc \theta - 1 \\
&= y + x + \frac { y } { x } + \frac { x } { y } - \frac { 1 } { x } - \frac { 1 } { y } - 1 \\
&= x + y + \frac { 1 } { x y } - \frac { x + y } { x y } - 1 = ( x + y - 1 ) \left( 1 - \frac { 1 } { x y } \right) < 0.
\end{align*}
得证.
\end{Proof}


不等式例讲A解答

陶平生

基本内容与方法:柯西不等式,平均不等式,排序不等式;变形配凑法,数形结合法,三角代换法,局部放缩法,化归法,归纳法,调整法.

\begin{Example}
设$a,b,c\in\mathbb{R}^+,abc=1$,证明: $(a+b)(b+c)(c+a)\geq 4(a+b+c-1)$.
\end{Example}
\begin{Proof}
\textbf{证法一.}局部放缩法.据对称性,不妨设$c\geq 1$,由于
$( a + b ) ( b + c ) ( c + a ) = ( a + b ) \left( c ^ { 2 } + a b + b c + c a \right) \geq ( a + b ) \left( c ^ { 2 } + 3 \sqrt [ 3 ] { ( a b c ) ^ { 2 } } \right)=(a+b)\left(c^2+3\right)$,则
\begin{align*}
&{ ( a + b ) ( b + c ) ( c + a ) - 4 ( a + b + c - 1 ) \geq ( a + b ) \left( c ^ { 2 } + 3 \right) - 4 ( a + b ) - 4 ( c - 1 ) } \\
& { = ( a + b ) \left( c ^ { 2 } - 1 \right) - 4 ( c - 1 ) = ( c - 1 ) [ ( a + b ) ( c + 1 ) - 4 ] } \\
&= ( c - 1 ) ( a c + b c + a + b - 4 ) = ( c - 1 ) \left( \frac { 1 } { b } + \frac { 1 } { a } + a + b - 4 \right) \geq 0.
\end{align*}
因此结论成立,取等号当且仅当$a=b=c=1$.

\textbf{证法二.}结构转换法,令$x=b+c,y=c+a,z=a+b$,则$a+b+c=\frac{x+y+z}{2}$,而$a=\frac{y+z-x}{2},b==\frac{z+x-y}{2},c=\frac{x+y-z}{2}$,由于$x,y,z$中任两数之和大于第三数,故以$x,y,z$为边长可以构成一个三角形$\triangle XYZ$,设其面积为$S$,外接圆半径为$R$,内切圆半径为$r$,条件$abc=1$化为
\[\frac { y + z - x } { 2 } \cdot \frac { z + x - y } { 2 } \cdot \frac { x + y - z } { 2 } = 1,\]

\[\frac { x + y + z } { 2 } \cdot \frac { y + z - x } { 2 } \cdot \frac { z + x - y } { 2 } \cdot \frac { x + y - z } { 2 } = \frac { x + y + z } { 2 },\]
也即$S^2=\frac { x + y + z } { 2 }$,所以$S^2r=\frac { x + y + z } { 2 }r$,即$S^2r=S$,得$Sr=1$. $\cdots\cdots\text{\ding{172}}$.

又由$S=\frac{xyz}{4R}$,得$xyz=4RS$,于是所证式化为
\[x y z \geq 4 \left( \frac { x + y + z } { 2 } - 1 \right),\]
即$4 R S \geq 4 \left( \frac { x + y + z } { 2 } - S r \right)$,也即$(R+r)S\geq \frac { x + y + z } { 2 }$,由此,
$(R+r)Sr\geq \frac { x + y + z } { 2 }r$,即$(R+r)Sr\geq S$,也即$(R+r)r\geq 1$ $\cdots\cdots\text{\ding{173}}$.

今证\ding{173},注意本题的等号在$a,b,c$相等时取到,此时$\triangle XYZ$为正三角形,当有$R=2r$,据此,将\ding{173}式左边写成
\[( R + r ) r = r ^ { 2 } + \frac { R r } { 2 } + \frac { R r } { 2 } \geq 3 \sqrt [ 3 ] { \frac { R ^ { 2 } r ^ { 4 } } { 4 } },\]
为证\ding{173},只需证$3 \sqrt [ 3 ] { \frac { R ^ { 2 } r ^ { 4 } } { 4 } } \geq 1$ ,即$r ^ { 2 } R \geq \frac { 2 } { 3 \sqrt { 3 } }$\cdots\cdots\text{\ding{174}}$.

由条件$Sr=1$,即$\frac { x + y + z } { 2 } r ^ { 2 } = 1$,由正弦定理,化为
\[( \sin X + \sin Y + \sin Z ) R r ^ { 2 } = 1.\cdots\cdots\text{\ding{175}}\]
由于在$\triangle XYZ$中,有$\sin X + \sin Y + \sin Z \leq \frac { 3 \sqrt { 3 } } { 2 }$,故由\ding{175}得$r ^ { 2 } R \geq \frac { 2 } { 3 \sqrt { 3 } }$,即\ding{174}成立,因此结论得证.
\end{Proof}

 

转载于:https://www.cnblogs.com/Eufisky/p/10396984.html

数学分析的重要定理 作者:杨艳萍,明清河 著 出版时间:2015年版 内容简介 《数学分析的重要定理》是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析的重要定理总结和归纳为微积分基本定理、微分定理、积分定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。   《数学分析的重要定理》从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。   《数学分析的重要定理》可供数学及相关专业的本科生、研究生和从事数学分析的教学研究人员参考。 目录 第1章 微积分基本定理 1.1 微积分基本定理的历史演变 1.1.1 微积分基本定理的发现阶段 1.1.2 微积分基本定理的创立阶段 1.1.3 微积分基本定理的完善阶段 1.2 微积分基本定理的内容与证明 1.2.1 微积分第一基本定理及其证明 1.2.2 微积分第二基本定理及其证明 1.3 微积分基本定理的相关内容分析 1.3.1 微积分基本定理的条件与结论 1.3.2 微积分基本定理的意义与作用 1.3.3 两种形式微积分基本定理之间的关系 1.3.4 微积分基本定理与其他定理之间的关系 1.4 微积分基本定理的应用 1.4.1 求含有变限积分函数的导数 1.4.2 求含有变限积分函数的极限 1.4.3 求含有变限积分的函数方程的解 1.4.4 讨论含变限积分函数的性质 1.4.5 构造变限积分辅助函数,证明等式与不等式 1.4.6 利用微积分基本定理证明数学分析的重要定理 1.4.7 利用牛顿莱布尼茨公式计算定积分 1.5 微积分基本定理的推广 1.5.1 原函数存在定理的推广 1.5.2 变限积分求导公式的推广 1.5.3 牛顿莱布尼茨公式的推广 参考文献 第2章 微分定理 2.1 微分定理的历史演变 2.1.1 对微分定理的初步认识 2.1.2 罗尔定理的演变 2.1.3 拉格朗日定理的演变 2.1.4 柯西定理的演变 2.1.5 泰勒定理的演变 2.2 微分定理的内容与证明 2.2.1 罗尔定理及其证明 2.2.2 拉格朗日定理及其证明 2.2.3 柯西定理及其证明 2.2.4 泰勒定理及其证明 2.3 微分定理的相关内容分析 2.3.1 微分定理的背景 2.3.2 微分定理的条件与结论 2.3.3 微分定理的意义与作用 2.3.4 四个微分定理之间的关系 2.3.5 微分定理值点 2.4 微分定理的应用 2.4.1 罗尔定理的应用 2.4.2 拉格朗日定理的应用 2.4.3 柯西定理的应用 2.4.4 泰勒定理的应用 2.5 微分定理的推广 2.5.1 罗尔定理的推广 2.5.2 拉格朗日定理的推广 2.5.3 柯西定理的推广 参考文献 第3章 积分定理 3.1 积分定理的历史演变 3.2 积分定理的内容与证明 3.2.1 积分第一定理及其证明 3.2.2 推广的积分第一定理及其证明 3.2.3 积分第二定理及其证明 3.2.4 加强条件的积分第二定理及其证明 3.3 积分定理的相关内容分析 3.3.1 积分定理的几何意义 3.3.2 积分定理的条件与结论 3.3.3 微分定理与积分定理之间的关系 3.3.4 积分定理值点 3.4 积分定理的应用 3.4.1 估计某些定积分的值 3.4.2 求含有积分的极限 3.4.3 证明含有积分的不等式 3.4.4 证明含有值点的积分问题 3.4.5 讨论含积分函数的收敛性与单调性 3.5 积分定理的改进与推广 3.5.1 积分定理的改进 3.5.2 积分第一定理的推广 3.5.3 积分第二定理的推广 参考文献 第4章 积分关系定理 4.1 积分关系定理的历史演变 4.2 积分关系定理的内容与证明 4.2.1 格林公式及其证明 4.2.2 高斯公式及其证明 4.2.3 斯托克斯公式及其证明 4.3 积分关系定理的相关内容分析 4.3.1 各类积分的起源与几何意义 4.3.2 各类积分之间的关系 4.3.3 各类积分之间的转化 4.3.4 四个积分公式之间的关系 4.3.5 四个积分公式的统一形式 4.4 积分关系定理的应用 4.4.1 格林公式的应用 4.4.2 高斯公式的应用 4.4.3 斯托克斯公式的应用 4.5 积分关系定理的推广 4.5.1 格林公式的推广 4.5.2 高斯公式的推广 4.5.3 斯托克斯公式的推广 参考文献 第5章 极限关系定理 5.1 海涅定理的历史演变 5.2 海涅定理的内容与证明 5.3 海涅定理的相关内容分析 5.3.1 海涅定理的条件与结论 5.3.2 海涅定理的意义与作用 5.4 海涅定理的应用 5.4.1 证明函数极限不存在 5.4.2 证明函数极限的性质 5.4.3 求数列的极限 5.4.4 判断级数的敛散性 5.4.5 判断函数的可导性 5.4.6 证明函数为常量函数 5.5 海涅定理的推广 5.5.1 把任意数列 推广为单调数列 5.5.2 把 存在极限 推广为非正常极限 5.5.3 把函数极限存在推广为函数连续及单侧连续 5.5.4 把任意数列 推广为有理(无理)数列 5.5.5 把函数极限存在推广为含参变量广义积分一致收敛 参考文献 第6章 闭区间上连续函数的性质定理 6.1 闭区间上连续函数性质定理的历史演变 6.2 闭区间上连续函数性质定理的内容与证明 6.2.1 有界性定理及其证明 6.2.2 最值性定理及其证明 6.2.3 零点存在定理及其证明 6.2.4 介值性定理及其证明 6.2.5 一致连续性定理及其证明 6.3 闭区间上连续函数性质定理的相关内容分析 6.3.1 闭区间上连续函数性质定理的理解 6.3.2 闭区间上连续函数性质定理的几何意义 6.3.3 闭区间上连续函数性质定理的条件与结论 6.3.4 闭区间上连续函数性质定理的统一表述 6.4 闭区间上连续函数性质定理的推广 6.4.1 有界性定理的推广 6.4.2 最值性定理的推广 6.4.3 零点存在定理的推广 6.4.4 介值性定理的推广 6.4.5 一致连续性定理的推广 6.5 闭区间上连续函数性质定理的应用 6.5.1 有界性定理的应用 6.5.2 最值性定理的应用 6.5.3 零点存在定理的应用 6.5.4 介值性定理的应用 6.5.5 一致连续性定理的应用 参考文献 第7章 实数连续性(完备性)定理 7.1 实数连续性定理的历史演变 7.2 实数连续性定理的内容与证明 7.2.1 确界存在定理及其证明 7.2.2 单调有界定理及其证明 7.2.3 柯西收敛准则及其证明 7.2.4 区间套定理及其证明 7.2.5 聚点定理及其证明 7.2.6 致密性定理及其证明 7.2.7 有限覆盖定理及其证明 7.3 实数连续性定理的相关内容分析 7.3.1 实数连续性定理的条件与结论 7.3.2 实数连续性定理的内在联系及等价性 7.3.3 实数连续性定理所提供的数学方法 7.3.4 实数连续性定理所提供的工具 7.4 实数连续性定理的推广 7.4.1 确界存在定理的推广 7.4.2 单调有界定理的推广 7.4.3 柯西收敛准则的推广 7.4.4 区间套定理的推广 7.4.5 聚点定理的推广 7.4.6 致密性定理的推广 7.4.7 有限覆盖定理的推广 7.5 实数连续性定理的应用 7.5.1 确界存在定理的应用 7.5.2 单调有界定理的应用 7.5.3 柯西收敛准则的应用 7.5.4 区间套定理的应用 7.5.5 聚点定理的应用 7.5.6 致密性定理的应用 7.5.7 有限覆盖定理的应用 参考文献 总参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值