空间正交基的定义_正交矩阵

正交:可以简单理解成就是垂直.

正交矩阵の定义:满足

的矩阵.

这个怎么理解呢?

我们假设A是一个列向量矩阵,标识为 A=[

],那么按照定义就是:

2200b3d8cf4bdc637f4d67542776ae0f.png

从上推导可以看出:任意

①如果i和j不相等:则

=0, 那就是说这两个向量垂直.

②如果i和j相等:则

=1, 那就是说:向量自身的内积为1,也就是:向量是单位向量(模为1的向量).

最终也就是说:如果矩阵的各列向量都是单位向量,并且两两正交。那么就说这个矩阵是正交矩阵。(参考xyz三维空间, 各轴上一个长度为1的向量构成的矩阵)


对于正交矩阵,组成它的列向量 构成了一个空间的基,称之为:规范正交基。 而我们知道:对于一个空间而言,我们是可以找到很多个不同的基来表示的(参考相似矩阵的基底变换),那对于一个空间:假设已知的基底是非规范正交基,有什么办法获取到它的规范正交基呢?【施密特正交法】。


凡是正交矩阵,一定可以对角化

1.对角化: 参考相似矩阵,本质就是

, 也就是说一个矩阵A可以转为一个对角阵B.

2. 正交矩阵:本身就是相互垂直,只是说它不见得是各个标准轴。以三维空间为例,我们希望正交矩阵是:

e6c297b72e53dc9f99f83e7ca0d09a90.png

但是实际上他很可能是下边这个样子:

35916accfffdbf5c028956506bc2d41e.png

亦即以z轴为中心逆时针旋转了45°, 此时向量a,b,c依然相互正交,但是其列向量并不都在标准轴上.

而对角化的结果是一个对角矩阵,本质就是把矩阵列向量都放到标准轴上。 那么很显然:正交矩阵一定可以做到! 所以有个zhihu博主说的很对:

89942b744ccf0d299bb249ec57b34cea.png

所以结论就是:凡是正交矩阵一定可以对角化

注意了,正交矩阵の每个列向量都是单位向量,所以对角化后,按道理得到的是一个单位矩阵。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值