考研数学:算子法

于二阶常系数非齐次线性微分方程:

y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y+py+qy=f(x)

定义算子

P ( D ) = D 2 + p D + q P(D)=D^{2}+p D+q P(D)=D2+pD+q

其中微分算子 D D D满足 D y = y ′ , D 2 y = y ′ ′ D y=y^{\prime}, D^{2} y=y^{\prime \prime} Dy=y,D2y=y,则二阶常系数非齐次线性微分方程等价于

P ( D ) y = f ( x ) P(D) y=f(x) P(D)y=f(x)

其特解可形式地记为

y ∗ = 1 P ( D ) f ( x ) y^{*}=\frac{1}{P(D)} f(x) y=P(D)1f(x)

算子 P ( D ) P(D) P(D)具有如下性质:

(1)设函数 y 1 , y 2 y_1,y_2 y1,y2具有二阶导数, c 1 , c 2 c_1,c_2 c1,c2为常数,则有 P ( D ) ( c 1 y 1 + c 2 y 2 ) = c 1 P ( D ) y 1 + c 2 P ( D ) y 2 P(D)\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} P(D) y_{1}+c_{2} P(D) y_{2} P(D)(c1y1+c2y2)=c1P(D)y1+c2P(D)y2

(2) P ( D ) e λ t = e λ t P ( λ ) P(D) e^{\lambda t}=e^{\lambda t} P(\lambda) P(D)eλt=eλtP(λ)

(3) P ( D 2 ) cos ⁡ a t = cos ⁡ a t P ( − a 2 ) P\left(D^{2}\right) \cos a t=\cos a t P\left(-a^{2}\right) P(D2)cosat=cosatP(a2)

(4) P ( D 2 ) sin ⁡ a t = sin ⁡ a t P ( − a 2 ) P\left(D^{2}\right) \sin a t=\sin a t P\left(-a^{2}\right) P(D2)sinat=sinatP(a2)

(5) P ( D ) e λ t v ( t ) = e λ t P ( D + λ ) v ( t ) P(D) e^{\lambda t} v(t)=e^{\lambda t} P(D+\lambda) v(t) P(D)eλtv(t)=eλtP(D+λ)v(t)

证明

(1)简单,不证

(2)

P ( D ) e λ t = ( D n + a 1 D n − 1 + ⋯ + a n ) e λ t = = e λ t ( λ n + a 1 λ n − 1 + ⋯ + α n ) = e λ t P ( λ ) \begin{aligned} P(D) e^{\lambda t} &=\left(D^{n}+a_{1} D^{n-1}+\cdots+a_{n}\right) e^{\lambda t}=\\ &=e^{\lambda t}\left(\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+\alpha_{n}\right)=e^{\lambda t} P(\lambda) \end{aligned} P(D)eλt=(Dn+a1Dn1++an)eλt==eλt(λn+a1λn1++αn)=eλtP(λ)

(3)因为

e i a t = cos ⁡ a t + i sin ⁡ a t e − i a t = cos ⁡ a t − i sin ⁡ a t \begin{array}{l} e^{i a t}=\cos a t+i \sin a t \\ e^{-i a t}=\cos a t-i \sin a t \end{array} eiat=cosat+isinateiat=cosatisinat

cos ⁡ a t = e i a t + e − i a t 2 , sin ⁡ a t = e i a t − e − i a t 2 i \cos at=\frac{e^{i a t}+e^{-i a t}}{2}, \quad \sin a t=\frac{e^{i a t}-e^{-i a t}}{2 i} cosat=2eiat+eiat,sinat=2ieiateiat

于是

P ( D 2 ) cos ⁡ a t = P ( D 2 ) ( e i α t + e − i a t 2 ) = = 1 2 P ( D 2 ) e i a t + 1 2 P ( D 2 ) e − i a t = = 1 2 P ( ( i a ) 2 ) e i a t + 1 2 P ( ( − i a ) 2 ) e − i a t = = 1 2 ( e i a t + e − i a t ) P ( − a 2 ) = cos ⁡ a t P ( − a 2 ) \begin{aligned} P\left(D^{2}\right) \cos a t &=P\left(D^{2}\right)\left(\frac{e^{i \alpha t}+e^{-i a t}}{2}\right)=\\ &=\frac{1}{2} P\left(D^{2}\right) e^{i a t}+\frac{1}{2} P\left(D^{2}\right) e^{-i a t}=\\ &=\frac{1}{2} P\left((i a)^{2}\right) e^{i a t}+\frac{1}{2} P\left((-i a)^{2}\right) e^{-i a t}=\\ &=\frac{1}{2}\left(e^{i a t}+e^{-i a t}\right) P\left(-a^{2}\right)=\cos a t P\left(-a^{2}\right) \end{aligned} P(D2)cosat=P(D2)(2eiαt+eiat)==21P(D2)eiat+21P(D2)eiat==21P((ia)2)eiat+21P((ia)2)eiat==21(eiat+eiat)P(a2)=cosatP(a2)

(4)

P ( D 2 ) sin ⁡ a t = P ( D 2 ) ( e i a t − e − i a t 2 i ) = = 1 2 i P ( D 2 ) e i a t − 1 2 i P ( D 2 ) e − i a t = = 1 2 i P ( ( i a ) 2 ) e i a t − 1 2 i P ( ( − i a ) 2 ) e − i a t = = 1 2 i ( e i a t − e − i a t ) P ( − a 2 ) = sin ⁡ a t P ( − a 2 ) \begin{aligned} P\left(D^{2}\right) \sin a t &=P\left(D^{2}\right)\left(\frac{e^{i a t}-e^{-i a t}}{2 i}\right)=\\ &=\frac{1}{2 i} P\left(D^{2}\right) e^{i a t}-\frac{1}{2 i} P\left(D^{2}\right) e^{-i a t}=\\ &=\frac{1}{2 i} P\left((i a)^{2}\right) e^{i a t}-\frac{1}{2 i} P\left((-i a)^{2}\right) e^{-i a t}=\\ &=\frac{1}{2 i}\left(e^{i a t}-e^{-i a t}\right) P\left(-a^{2}\right)=\sin a t P\left(-a^{2}\right) \end{aligned} P(D2)sinat=P(D2)(2ieiateiat)==2i1P(D2)eiat2i1P(D2)eiat==2i1P((ia)2)eiat2i1P((ia)2)eiat==2i1(eiateiat)P(a2)=sinatP(a2)

(5)

D m e λ t v ( t ) = ∑ k = 0 m C k m D k e λ t ⋅ D m − k v ( t ) = = ∑ k = 0 m C k m λ k e λ t D m − k v ( t ) = = e λ t ( ∑ k = 0 m C h m λ k D m − k ) v ( t ) = = e λ t ( D + λ ) m v ( t ) \begin{aligned} D^{m} e^{\lambda t} v(t) &=\sum_{k=0}^{m} C_{k}^{m} D^{k} e^{\lambda t} \cdot D^{m-k} v(t)=\\ &=\sum_{k=0}^{m} C_{k}^{m} \lambda^{k} e^{\lambda t} D^{m-k} v(t)=\\ &=e^{\lambda t}\left(\sum_{k=0}^{m} C_{h}^{m} \lambda^{k} D^{m-k}\right) v(t)=\\ &=e^{\lambda t}(D+\lambda)^{m} v(t) \end{aligned} Dmeλtv(t)=k=0mCkmDkeλtDmkv(t)==k=0mCkmλkeλtDmkv(t)==eλt(k=0mChmλkDmk)v(t)==eλt(D+λ)mv(t)

此处 m m m是任意的非负整数,由此可以得到公式4

下面讨论非齐次项 f ( x ) f(x) f(x)与特解 y ∗ ( x ) y^{*}(x) y(x)的关系

  • f ( x ) = e k x f(x)=\mathrm{e}^{k x} f(x)=ekx

此时 y ∗ ( x ) y^{*}(x) y(x)的形式: y ∗ ( x ) = 1 F ( D ) e k x = 1 F ( k ) e k x y^{*}(x)=\frac{1}{F(D)} \mathrm{e}^{k x}=\frac{1}{F(k)} \mathrm{e}^{k x} y(x)=F(D)1ekx=F(k)1ekx,其中 F ( k ) ≠ 0 F(k) \neq 0 F(k)=0 F ( k ) F(k) F(k) F ( D ) F(D) F(D)中的 D D D k k k代替所得值

:若 F ( k ) = 0 F(k)=0 F(k)=0,不妨设 k k k F ( k ) F(k) F(k) m m m重根,则 1 F ( D ) e k x = x m 1 F ( m ) ( D ) e k x = x m 1 F ( m ) ( k ) e k x \frac{1}{F(D)} \mathrm{e}^{k x}=x^{m}\frac{1}{F^{(m)}(D)} \mathrm{e}^{k x}=x^{m} \frac{1}{F^{(m)}(k)} \mathrm{e}^{k x} F(D)1ekx=xmF(m)(D)1ekx=xmF(m)(k)1ekx,其中 F ( m ) ( D ) F^{(m)}(D) F(m)(D)表示 F ( D ) F(D) F(D) D D D m m m阶导数。

  • f ( x ) = sin ⁡ a x f(x)=\sin a x f(x)=sinax cos ⁡ a x \cos a x cosax

y ∗ ( x ) = 1 F ( D 2 ) sin ⁡ a x = sin ⁡ a x F ( − a 2 ) y^{*}(x)=\frac{1}{F\left(D^{2}\right)} \sin a x=\frac{\sin a x}{F\left(-a^{2}\right)} y(x)=F(D2)1sinax=F(a2)sinax,或 y ∗ ( x ) = 1 F ( D 2 ) cos ⁡ a x = cos ⁡ a x F ( − a 2 ) y^{*}(x)=\frac{1}{F\left(D^{2}\right)} \cos a x=\frac{\cos a x}{F\left(-a^{2}\right)} y(x)=F(D2)1cosax=F(a2)cosax,其中 F ( − a 2 ) ≠ 0 F\left(-a^{2}\right) \neq 0 F(a2)=0

:若 F ( − a 2 ) = 0 F\left(-a^{2}\right)=0 F(a2)=0,不妨设 ( − a 2 ) \left(-a^{2}\right) (a2) F ( − a 2 ) = 0 F\left(-a^{2}\right)=0 F(a2)=0 m m m重根,则

1 F ( D 2 ) sin ⁡ a x = x m ⋅ 1 F ( m ) ( D 2 ) sin ⁡ a x \frac{1}{F\left(D^{2}\right)} \sin a x=x^{m} \cdot \frac{1}{F^{(m)}\left(D^{2}\right)} \sin a x F(D2)1sinax=xmF(m)(D2)1sinax

1 F ( D 2 ) cos ⁡ a x = x m ⋅ 1 F ( m ) ( D 2 ) cos ⁡ a x \frac{1}{F\left(D^{2}\right)} \cos a x=x^{m} \cdot \frac{1}{F^{(m)}\left(D^{2}\right)} \cos a x F(D2)1cosax=xmF(m)(D2)1cosax

  • f ( x ) = e k x v ( x ) f(x)=e^{k x} v(x) f(x)=ekxv(x)

y ∗ ( x ) = 1 F ( D ) e k x v ( x ) = e k x 1 F ( D + k ) v ( x ) y^{*}(x)=\frac{1}{F(D)} \mathrm{e}^{k x} v(x)=e^{k x} \frac{1}{F(D+k)} v(x) y(x)=F(D)1ekxv(x)=ekxF(D+k)1v(x)

  • f ( x ) f(x) f(x) k k k此多项式,当 P ( 0 ) ≠ 0 P(0) \neq 0 P(0)=0时,由多项式除法得:

1 P ( D ) = ( b 0 + b 1 D + ⋯ + b k D k ) + ( b k + 1 D k + 1 + b k + 2 D k + 2 + ⋯   ) \begin{array}{l} \frac{1}{P(D)}=\left(b_{0}+b_{1} D+\cdots+b_{k} D^{k}\right)+\left(b_{k+1} D^{k+1}+\right. \\ \left.b_{k+2} D^{k+2}+\cdots\right) \end{array} P(D)1=(b0+b1D++bkDk)+(bk+1Dk+1+bk+2Dk+2+)

由于 k k k次多项式超过 k k k阶的导数全为 0 0 0,故由上式得特解:

y ∗ = 1 P ( D ) f ( x ) = ( b 0 + b 1 D + ⋯ + b k D k ) f ( x ) y^{*}=\frac{1}{P(D)} f(x)=\left(b_{0}+b_{1} D+\cdots+b_{k} D^{k}\right) f(x) y=P(D)1f(x)=(b0+b1D++bkDk)f(x)

几个注解

D D D表示微分,则 1 D cos ⁡ x = ∫ cos ⁡ x d x = sin ⁡ x + C \frac{1}{D} \cos x=\int \cos x d x=\sin x+C D1cosx=cosxdx=sinx+C,积分常数 C C C不写。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值