ranksum matlab,Wilcoxon rank sum test

Test the hypothesis of an increase in the population median.

Load the sample data.

load('weather.mat');

The weather data shows the daily high temperatures taken in the same month in two consecutive years.

Perform a left-sided test to assess the increase in the median at the 1% significance level.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...

'tail','left')

p = 0.1271

h = logical

0

stats = struct with fields:

zval: -1.1403

ranksum: 837.5000

Both the p-value of 0.1271 and h = 0 indicate that there is not enough evidence to reject the null hypothesis and conclude that there is a positive shift in the median of observed high temperatures in the same month from year 1 to year 2 at the 1% significance level. Notice that ranksum uses the approximate method to calculate the p-value due to the large sample sizes.

Use the exact method to calculate the p-value.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...

'tail','left','method','exact')

p = 0.1273

h = logical

0

stats = struct with fields:

ranksum: 837.5000

The results of the approximate and exact methods are consistent with each other.

### Matlab `ranksum` 函数详解 #### 函数概述 `ranksum` 是 MATLAB 中用于执行 Wilcoxon 秩和检验 (也称为 Mann-Whitney U 检验) 的函数。该测试适用于两个独立样本,用来判断这两个样本是否来自相同分布的人群。 #### 基本语法 最简单的调用方式如下所示: ```matlab [p,h] = ranksum(x,y); ``` 这里 `x` 和 `y` 表示要比较的数据向量[^1]。 #### 返回值解释 - **p**: 这是一个 p-value, 即观察到当前数据差异的概率,在假设零假说成立的情况下。通常情况下如果 p 小于设定显著性水平 α(比如0.05),则拒绝原假设认为两组之间存在统计学意义上的差别[^2]。 - **h**: 结果标志变量;当 h=1 时表示拒绝零假设即认为有显著区别;而 h=0 则表示无法拒绝零假设意味着无明显不同[^3]。 #### 完整例子展示 下面给出一段完整的代码来演示如何使用此功能来进行数据分析: ```matlab % 创建一些随机数作为示例数据集 rng('default'); % 设置种子以便重复实验结果 dataGroupA = normrnd(75,10,[100,1]); % 正态分布 N(75,10^2), n=100 dataGroupB = normrnd(80,10,[100,1]); % 正态分布 N(80,10^2), n=100 % 执行秩和检验并获取返回的结果 [pValue, hypothesisResult] = ranksum(dataGroupA,dataGroupB); disp(['P Value: ', num2str(pValue)]); if(hypothesisResult==1) disp('Hypothesis Test Result: Reject null hypothesis'); else disp('Hypothesis Test Result: Fail to reject null hypothesis'); end ``` 通过上述实例可以看出,`ranksum` 可以帮助研究者快速有效地评估两组独立观测之间的关系强度以及是否存在统计上的显著性差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值