两个空间点直接距离投影公式_机器学习 线性代数基础 | 3.1 投影,寻找距离最近的向量...

本节探讨在没有线性方程组精确解时,如何寻找最接近的近似解。通过投影概念,解释如何在直线和二维平面上找到与目标点距离最近的点。介绍了从一维到高维空间的投影矩阵计算方法,为解决实际工程中的无解问题提供理论基础。
摘要由CSDN通过智能技术生成
7afbab565283199ea8416ee733b78c0b.png

72152826265e1df7145b761da29954a8.png

3.1

投影,寻找距离最近的向量

43503efba65415460701dedc87a97dab.gif

在上一章,我们学习了如何基于空间的概念去判断线性方程组解的存在性,以及具体如何求线性方程组的解。对于一个方程组而言,有解固然可喜,无解之时,路又在何方?其实,由于一些实际原因,无解的问题在实际工程中往往更为普遍。没有精确解,我们该如何处理?我们在本节的一开始就会抛出这个问题,让大家一起思考解决的方法。

其实从直觉出发,我们会想,既然没有精确解,那我们是不是应该去寻找距离目标最近的近似解,这个思考方向无疑是正确的。那么问题就来了,空间中如何定义距离?又该怎么衡量最近?在这一小节中,我们会从最简单的一维直线入手,探讨对于空间中的任意目标点,如何在直线上寻找与之距离最近的点,并最终将问题和解决方法拓展到任意的88fcfdf8c96d04db34531b59ebcda674.png空间的子空间上。

3.1.1两个需要近似处理的问题

在开始整个全新一章内容之前,我们先抛出两个问题,作为近似与拟合专题的切入点,也请各位读者一起思考一下:

第一个问题依然是关于线性方程组解的问题。

在上一章的最后一节里,我们从空间映射的角度入手,详细分析了线性方程组的解问题,阐述了在何种情况下有解,并且如何来描述整个解的空间。那么接下来,我们再看看下面这个方程组:

033306e2df49bf934370ac72eb43393a.png

我们动手去解一下这个方程组,会发现这个方程组没有解,无解的原因是因为向量17a344e358534c8c1066e1bc073a4ffd.png不在矩阵22f5bed3b41bbbd2221a5989cba27b1b.png的列空间中。但是,我们不能仅仅只停留在这里,满足于无解这个基本结论。

因为,在实际的工程领域中会经常出现这种情况,那么该如何去解决?换句话说,在没有精确解的情况下我们如何尽可能的找到一组近似解8d79e2b018ce4548a56bcf585061ea86.png,使得方程组左侧得到的结果离右侧的目标尽可能距离最近?至于说这个距离该如何定义,又该如何去衡量远近?这是我们本章后续要讨论的重点内容。

第二个问题是关于直线拟合的问题。

我们知道,如果在平面上任取两个点,一定能够找到一条通过他们的直线。但是如果有三个点、四个点甚至更多呢,还能保证一定能够找到一条直线同时穿过他们吗?比如下面这种情况:

我们在fa00dd73fb25899f0c6a9493fab13f9f.png平面上选取三个点,他们的坐标分别是:(0,1),(1,4) 和 (2,3) ,试问我们能找到一条直线同时通过这三个点么?答案是不行。那么该如何解决?类比上面的问题一,当没有完全精确的解决方案时,能否退而求其次找到一个最接近的方案?即,能否找到一条直线,距离这三个点的距离最近?

3.1.2从投影的角度谈“最近”

在上面所提到的两个例子中,我们的确都没有办法获取准确的解。于是我们退而求其次,希望能够找到距离结果最近的近似解来解决问题。那么,我们该如何定义和描述这个“距离最近”呢?

我们先来看下面这个问题:

在空间当中有一条穿过原点的直线,并且这条直线沿着向量a的方向。在空间中还有一个点b,不过他不在这条直线上,那么如何在这条直线上找到一个点,使得这个点距离点b最近?

这个问题大家可能会觉得很简单,解决方法当然是通过点b向已知直线做一条垂线,这样就能获得我们想要的最短距离,其中我们要寻找的点就是垂线与直线的交点,如图3.1所示。

e4d5ad15271c654d0b3eb8c124247a5e.png

图3.1  寻找距离直线最近的距离

在图3.1中,我们发现向量b和向量a的夹角是d6f2a5394e81f703799b0909f6037b28.png,因此,通过b点到直线的最近距离可以表示为f274a613927213a0940fc3ec41a60de7.png。还需要注意到向量p,他是从原点出发到垂直交点的向量,是向量b在向量a上的投影。而对于向量cebd4ef118f28b872374ad82c2f436d5.png,我们称之为误差向量,他的长度就是我们要寻找的最近距离。

当然我们也可以用向量点积的方式得到投影向量p的长度,然后再进一步通过代数运算的方法得到向量p的坐标表示。这当然是没有问题的。但是,不知道大家想过没有,这里谈的是直线的情况,一维空间的计算是非常简单的,如果我们进一步对问题进行拓展,去讨论向量在二维平面、三维空间甚至是更高维空间中的投影问题,依靠这种方法就不太合适。所以,我们在这里需要借助矩阵工具来描述这个投影的过程,需要一种通用的计算方法。

3.1.3用矩阵描述向一维直线的投影

我们接着说,首先需要分析如何利用矩阵描述向量b向一条直线上进行投影的过程。我们将向量a作为这条直线的基向量,那么向量p就可以用向量a来进行表示,我们记作:794801a68ef81a01ed2f5a94932cda26.png(80468f99a34640ad097d8a95658e8e17.png是一个标量),我们接下来的目标就是去求取标量系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值