内容泛化是什么意思_码农要术:机器学习篇:泛化挑战

本文介绍了机器学习中的泛化能力及其重要性,通过费米的故事引出模型参数过多可能导致泛化能力下降。接着详细阐述了泛化误差的来源,特别是偏差-方差分解,并探讨了降低噪声、偏差和方差的方法,包括增加数据、正则化、自助抽样和模型调优等策略。
摘要由CSDN通过智能技术生成

先讲一个故事,著名数学物理学家弗里曼·戴森年轻的时候曾向费米请教,因为他们提出了一个新的理论计算与费米的实验测量结果的相符。费米看了一眼就给否定了,戴森很伤心,但是还是继续请教不对的原因。费米反问道:“你们在计算过程中引入了多少个任意参数?”戴森回答说四个。于是费米讲了一句日后很著名的话:“我记得我的朋友约翰·冯·诺依曼(John von Neumann)曾经说过,"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"。翻译过来就是,四个参数画大象,五个参数象鼻晃

费米想表达的意思,是说你这套理论参数太多,什么结果都可以拟合,泛化能力不好。50年后戴森回头再看,费米的结论是对的。

泛化能力,表示模型在新的、独立的测试数据上的预测能力。机器学习的基本目标是对训练集合中样例的泛化。这是因为,不管我们有多少训练数据,在测试阶段这些数据都不太可能会重复出现。所以说,泛化很重要。 

有意思的是,有学者用傅立叶变换把大象拟合出来了,并且发表了一篇论文:drawing an elephant with four complex parameters。不过这篇论文也有些投机取巧,用的是复数,说是4个参数,实际上是8个,再加上晃鼻子的一共10个参数。可以看看拟合的效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值