二维绕任意点旋转_在平面中,一个点绕任意点旋转θ度后的点的坐标

( x0 - rx0 ) / La = cos(a + b)                    -    ①

( x - rx0 ) / Lb = cos(b)                            -    ②

La = Lb                                                        -    ③

( y0 - ry0 ) / La = sin(a+b)                       -    ④

( y - ry0 ) / Lb = sin(b)                             -    ⑤

当cos(b),cos(a + b)不为零时,由①②③得:

(x0- rx0)/ (x-rx0) = cos(a+b)/cos(b)

(x0- rx0)/ (x-rx0) = (cos(a)cos(b)-sin(a)sin(b))/cos(b)

(x0- rx0)/ (x-rx0) = cos(a) - sin(a)tan(b)

(x0- rx0) = (cos(a) - sin(a)tan(b))(x - rx0)

x0 = (x - rx0)cos(a) - sin(a)tan(b)(x - rx0) + rx0

x0 = (x - rx0)cos(a) - (y - ry0)sin(a) + rx0                        -    A

当sin(b),sin(a + b)不为零时,由③④⑤得:

(y0 - ry0)/(y - ry0) = sin(a+b)/sin(b)

(y0 - ry0)/(y - ry0) = (sin(a)cos(b) + cos(a)sin(b))/sin(b)

(y0 - ry0)/(y - ry0) = sin(a)cos(b)/sin(b) + cos(a)

y0 = (y - ry0)sin(a)cos(b)/sin(b) + (y - ry0)cos(a) + ry0

y0 = (y - ry0)sin(a)(x - rx0)/(y - ry0) + (y - ry0)cos(a) + ry0

y0 = (x - rx0)sin(a) + (y - ry0)cos(a) + ry0                        -    B

∴当cos(b),cos(a + b)不为零时A、B式成立

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值