可逆矩阵性质总结_线性代数入门——逆矩阵常见运算律的推导和总结

本文深入浅出地讲解了线性代数中的可逆矩阵性质,包括逆矩阵与转置的可交换性、求逆与伴随矩阵的可交换性,并通过例题和公式解析来巩固这些概念。此外,强调了矩阵运算公式的适用条件,特别是矩阵可逆的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养。线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释。在内容上,以国内的经典教材“同济版线性代数”为蓝本,并适当选取了一些补充材料以开阔读者的视野。本系列文章适合作为初学线性代数时的课堂同步辅导,也可作为考研复习的参考资料。文章中的例题大多为扎实基础的常规题目和帮助加深理解的概念辨析题,并有相当数量的历年考研试题。对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“线性代数入门”系列文章,欢迎关注数学若只如初见

03788b90ccb5ec89d5c15e922cb39253.png

06cd6377938b4a0b24854d46fd5b60e7.png

前面两节我们介绍了逆矩阵的概念及矩阵可逆的充要条件,本节我们来推导逆矩阵的一些常见运算律,例如求逆和转置运算的“可交换性”等,另外要学会证明一些逆矩阵的简单运算性质,本节介绍一个这方面的典型例题。(由于公式较多,故正文采用图片形式给出。)

一、逆矩阵的基本运算律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值