这一段时间对现代滤波进行了学习,对自适应滤波器和卡尔曼滤波器有了一定认识,并对它们用MATLAB对语音信号进行了滤波,发现卡尔曼滤波器还是比较有用,能够在较大的噪声中还原原来的信号。新的学期马上就开始了,由于TI的开发板一直在维修,所以学习TI开发板的计划搁置,但是对声音信号的处理及滤波器的认识有了进一步提高。新的学期继续努力!
卡尔曼滤波的基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。
语音信号在较长时间内是非平稳的,但在较短的时间内的一阶统计量和二阶统计量近似为常量,因此语音信号在相对较短的时间内可以看成白噪声激励以线性时不变系统得到的稳态输出。假定语音信号可看成由一AR模型产生:

时间更新方程:

测量更新方程:

K(t)为卡尔曼增益,其计算公式为:

本文介绍了使用卡尔曼滤波器处理语音信号的过程,通过MATLAB实现对语音信号的滤波,减少噪声影响。文章详细阐述了卡尔曼滤波的基本思想,包括时间更新和测量更新方程,并提供了MATLAB代码示例。
最低0.47元/天 解锁文章
7810

被折叠的 条评论
为什么被折叠?



