哈夫单位的定义和意义_向量空间的定义|线性代数漫步(三)

本文适合未正式学过线性代数的读者,从线性空间的概念入手,介绍向量空间的定义,包括加法、标量乘法的性质,以及实向量空间和复向量空间。通过实例解析函数集合构成的向量空间,并证明相关性质,如加法单位元的唯一性、加法逆元的存在性和唯一性,以及标量乘法的一些基本性质。
摘要由CSDN通过智能技术生成

对于没有正式学过线性代数的同学来说,可能在很多地方都接触过“线性”这一概念。老师一定擦边说过很多次,求导是线性的,线性方程组是线性的(废话),解微分方程的时候也有过“线性相关”“朗斯基行列式”这些貌似只有在线性代数里面才会出现的名词。笔者开始看线性代数后,真是越看越入迷,越看越惊叹。不过这是个长篇故事,今儿还是从线性空间开始说起。


( 一般情况下,
是一个域。不过初学比较常见、也比较直观的是
代表实数域
或复数域
。但是得到的结论一般来说都适用于
是任意域的情况)
上的加法和标量乘法具有交换性和结合性,并且有加法单位元和乘法单位元,加法和标量乘法通过分配性质联系在一起。这些性质是高中学习向量已经熟知的。把这些性质加以抽象拓展,使我们能够描述的对象不仅限于书上画的那些“有向线段”、“箭头”。

0cf49db633a7c9895e417a7fcc80a98b.png
最直观的向量描述:箭头o(* ̄︶ ̄*)o

对一个集合

定义加法和变量乘法如下:
  • 定义:加法、标量乘法
    • 集合
      上的加法是一个把每一对
      都对应到的
      中的一个元素的函数,这个映射的像记为
    • 集合
      上的标量乘法是可以把任意
      对应到
      中一个元素的函数,这个映射的像记为

定义好这两种映射后,就可以正式定义向量空间(或称线性空间)了:

  • 定义:向量空间
    • 若集合
      带有加法和标量乘法并满足以下性质,则称其为
      上的向量空间(或线性空间),而把
      重点中的元素称为“标量”或者“纯量”(对于
      是数域——特别是实数域或者复数域——的情况,也把其中元素简单直观地称为“数”)
交换性(commutativity):对任意
,都有

结合性(associativity):对所有
,都有

加法单位元(additive identity):存在元素
,使得对任意
,都有

加法逆元(additive inverse):对任意元素
,都存在
,使
;(注意要先定义加法单位元才能定义加法逆元)

乘法单位元(multiplicative identity):对所有
都有

分配性质(distributive properties):对所有
,都有

向量空间中的元素称为向量或点。虽说以往喜欢给表示向量的字母加粗,但是打加粗的符号要打

,比直接打字母要麻烦一些,由于要打大量的向量,方便起见就没有加粗,但是要根据上下文注意区分。比如分配性质中的
,式中的
上的标量,而
是向量空间
中的向量。

向量空间的标量乘法依赖于

。因此在需要确切指明的时候会说“
上的 向量 空间”。比如说
上的向量空间,
上的向量空间 。
  • 定义:实向量空间、复向量空间
    • 上的向量空间称为实向量空间。
    • 这一句定义复向量空间的废话就不用我说了吧。

下面讲一个例子。

是一个集合,用
表示
映射到
的所有函数的集合。也就是说,这个集合里面的元素是一个个的函数,这些函数以
为定义域,映射到

对于

,规定这两个元素的和
是如下函数:对所有的
,都有

对于

,规定标量乘法
是如下函数:对所有的

看到这里或许有人不禁要问,这是什么废话?难道

还要规定一下?这里要把所谓的“和”、“加法”好好说一下。
这个式子是什么意思?就以
为数来说,意思是,取
等于定义域上的某个数,然后根据两个函数
的形式把
具体的值算出来,然后加起来。也就是说,
取定某个数,
都是
这个式子的结果也是一个
数。

再看

。前面提到过,
里面的元素都是映射,
都是
映射,不是 。映射的加法是啥意思?学过吗?好像没有哦~于是,此处给出映两个映射的加法的定义,这个加法是一种 映射,它是把想要加的那两个映射(此处是
)对应到一个映射,数
在所得的这个映射的操作下得到的值,等于分别被
映射后相加得到的值——
。把新的映射写作
,于是有

是非空集合,则很容易证明
在上文定义的加法和标量乘法下是
上的 向量空间。这个向量空间的加法单位元是如下定义的零函数
:对任意
,都有

对于

中的元素
,其加法逆元是如下定义的函数
:对任意
,都有


下面给出向量空间一些基本性质以及证明。

  • 向量空间有唯一的加法单位元。
证明:设
都是向量空间
的加法单位元,则

第一个等号成立是因为
是加法单位元,所以
可以加上它而保持不变;第二个等号成立当然是因为加法的交换性;第三个等号成立的 原因和第一个等号类似,是因为
是加法单位元。上式证明了
,所以
中只有一个加法单位元。

根据定义 ,向量空间中的每个元素都有加法逆元。可以证明:

  • 向量空间中的每个元素都有唯一的加法逆元。
证明:设
是向量空间,
,并设
都是
的加法逆元,则

因此

前面提到过,要定义加法逆元得先定义加法单位元,此处对加法逆元唯一性的证明又用到了加法单位元。步骤中的 一连串等号成立的原因显而易见,不再赘述。

由于每个元素的加法逆元是唯一的,那用一个特殊的记号来表示它就有意义了。

  • 记号:设
    ,则
    • 表示
      的加法逆元;
    • 表示
      ,即
      的加法逆元的和。

以下再给出三条性质及证明。

  • 标量0乘以向量:对
    ,都有
证明:对
,有

在等式两端都加上
的加法逆元,可得

我们证明的式子中,左端的

代表与向量
相乘的数0,右端的
代表加法单位元向量,或者写作粗体更明显一些:

有一个性质与上面的结果类似——

  • 标量乘以向量0:对任意
    ,都有
证明:对
,有

在上式两端都加上
的加法逆元,可得

同样,为了看清楚,把结果写作

下面又是一个需要证明的废话:

  • 数-1乘以向量:对任意
    ,都有
证明:对
,有

这个等式说明,
相加得零向量,因此
的加法逆元,按照前文的记号,写作

除了这里证明的几个性质,还可以证明:

  1. 对任意
    ,都有
    。(这个性质可理解为,
    的加法逆元,也即
    互为加法逆元)
  2. ,若
    ,则必有

向量空间可以说是

的推广,正是
的某些特殊性质提供了定义向量空间的动机,因此向量空间的某些性质(主要指那些有直观的几何解释的性质)才会让人觉得眼熟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值