平方的求和公式_比内-柯西(Binet-Cauchy)公式的证明与应用

本文详细介绍了比内-柯西公式,包括公式的介绍、证明过程及在Cauchy恒等式、Cauchy不等式、行列式上界估计和Hadamard不等式中的应用。通过拉普拉斯展开和矩阵运算,揭示了该公式如何从不规则矩阵乘积转换为规则方阵乘积之和,并讨论了取等条件及其在无限维线性空间中的意义。
摘要由CSDN通过智能技术生成

d897efcb2369925aaf1be2f7aef77c8a.png

Hello大家好,我是小希小朋友,这是我第一次在知乎上写回答/文章,先来混个脸熟=_=

大致浏览了一下知乎,好像没人写过这公式的详细总结,刚好我来填这个坑,这篇文章会详细讲解比内-柯西公式的证明与它在证明别的公式中的运用⊙▽⊙。

  1. 公式简介
  2. 证明过程
  3. 比内-柯西公式的应用(一)(Cauchy恒等式、Cauchy不等式)
  4. 比内-柯西公式的应用(二)(行列式上界估计、Hadamard不等式)

1.公式简介

比内-柯西公式的形式如下,设

,

i)若s>n,则|AB|=0;

ii)若s≤n,那么|AB|等于A的所有s阶子式以及B的相应s阶子式的乘积之和,即

这条公式的意义在于将两个不规则的矩阵乘积变成规则方阵的乘积之和,在理论上与其它公式证明中具有巨大意义。

2.证明过程

对于第一种情况s>n,因为

于是AB不是满秩矩阵,从而|AB|=0.

也可以这么来直观理解:这个s阶方阵AB是由比它秩低的方阵生成的,因此不满秩,从而|AB|=0.

对于第二种情况s≤n,由于A与B均不为方阵,我们希望将它们组成方阵形式,这样更好处理

同时,为了能让它们相互作用,我们希望能在中间加个介质,以达到运算的目的。考虑到介质最好尽可能简单,最好选择单位矩阵

。同时为了保证运算过程中不出现bug,
的秩越大越好,于是选在了左下角。因此,最终用于证明的方阵如下:

正式证明:作分块初等行变换,试图凑出AB的形式:

接下来我们看看右边是什么,先把A显式写出来

我们观察公式形式,发现这和拉普拉斯(Laplace)展开很像,考虑按含

元素的
前s行展开。此时列自由选取,但只有选取前n列,产生的子式才不为0,此时得到比内-柯西公式中的第一个子矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值