两个三维向量相乘公式_多维(三维四维)矩阵向量运算-超强可视化

本文探讨高维矩阵运算,特别是三维和四维向量的相乘,通过可视化帮助理解。介绍如何将高维矩阵转换为二维进行运算,并强调在矩阵相乘时,需确保最后两维匹配。通过实例解释了三维、四维矩阵相乘的规则,并指出四维矩阵运算中前两维表示矩阵排列,相乘时保留最大值。
摘要由CSDN通过智能技术生成

高维矩阵或者向量的运算,是一个困扰着我很久的问题;在NLP里面经常就会碰到三维,四维的向量运算,矩阵相乘时相当头痛,比如著名的Attention中Q、K、V相乘,实在想不出来四维的到底长什么样,又是怎么相乘的。于是特地写下此文章,记录下个人的学习路程,也希望帮到大家。

1、高维矩阵可视化

一维:首先一维的矩阵非常简单,比如[1,2,3,4],可以用下图表示

19bc91730aadcd332a992b3c2ae33199.png

二维:接着来看二维,可用以下代码生成一个二维矩阵,采用keras框架

import keras.backend as K
import numpy as np

a = K.constant(np.arange(1, 7), shape=[2,3])
print(K.eval(a))

输出为:

[[1. 2. 3.]
 [4. 5. 6.]]

看维度的小技巧:想知道一个矩阵的维度是几维的,只需要看开头有几个“[”,有1个即为1维,上面的两个就是两维,后面举到的三维和四维的例子,分别是有三个“[”、四个“[”的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值