季节乘积模型_时间序列——ARIMA模型的季节模型

本文介绍了ARIMA模型在处理具有季节效应的时间序列数据时的应用,包括简单季节模型和乘积季节模型。简单季节模型通过差分提取趋势和季节信息,而乘积季节模型则用于处理复杂交互影响的情况。文中举例说明了如何使用R语言的arima函数拟合这两种模型,并进行了白噪声检验以验证模型的适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c0bf8717fba71a724d3f3ecd072aa756.gif

c989a9a35af7d07ac4a0994f7147b511.png

作者丨梅子

来源丨医数思维云课堂(ID:Datamedi)

ARIMA模型可以对具有季节效应的序列建模,根据季节效应提取的难易程度可以分为简单季节模型与乘积季节模型。

简单季节模型

简单季节模型是指序列中的季节效应和其他效应之间是加法关系,即

23b553095b931628031013d962d052ac.png

简单季节模型实际上就是通过趋势差分、季节差分将序列转化为平稳序列,具体分为三步:

  • 第一步:通过简单的低阶差分将趋势信息提取成分;

  • 第二步:通过简单的周期步长差分将序列中的季节信息提取充分;

  • 第三步:提取完季节信息和趋势信息之后的残差序列就是一个平稳序列,再

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值