ARIMA乘法季节模型

目录

ARIMA乘法季节模型

例题1 

例题 2

例题3


ARIMA乘法季节模型

        序列的季节效应、长期趋势效应和随机波动之间有着复杂的相互关联性,简单的季节模型不能充分地提取其中的相关关系,这时常采用乘积季节模型。

例题1 

我国1949-2008年年末人口总数(单位:万人)。选择适当的指数平滑法拟合该序列的长期趋势,并作5期预测。

代码:

加载数据:

a<-read.table('D:/桌面/大三下作业/时间序列/实验报告6/习题4-5.csv',sep=',',header=T) #读取数据
x<-ts(a$population,start=1949)
plot(x,main='时序图') #绘制时序图

返回:

由时序图可知,该序列为显著的线性递增序列,可以使用holt两参数指数平滑法进行趋势拟合和预测,或使用ARIMA ( 1,1,0)模型进行拟合和预测。

拟合模型:

fit1<-HoltWinters(x,gamma=F) #进行2参数指数平滑法进行拟合
fit1 #输出拟合结果

返回:

plot(fit1,main='拟合结果时序图') #对拟合结果绘制时序图

返回:

由于没有指定平滑系数的值,所以R基于最优拟合原则计算出平滑系数:

通过Holt两参数指数平滑法,不断迭代,得到最后一期的参数估计值为:

则未来任意k期的预测值为:

 进行5期预测:

fore1<-forecast(fit1,h=5)
fore1

返回:

plot(fore1) #对预测结果绘制时序图
lines(fore1$fitted,col='red') #拟合值

返回:

例题 2

某地区1962-1970年平均每头奶牛的月度产奶量数据(单位:磅)。

(1)绘制该序列的时序图,直观考查该序列的特点(有无趋势和季节)。

(2)选择适当的指数平滑法预测下一年该地区奶牛的月度产奶量。写出指数平滑模型、预测模型,预测值和80%、95%的置信区间,绘制预测图。

(1)

加载数据:

a<-read.table('D:/桌面/大三下作业/时间序列/实验报告6/习题4-7.csv',sep=',',header=T)
x<-ts(a$ milk_yield,start=c(1962,1),frequency=12)

绘制时序图:

plot(x,main='时序图') #绘制时序图

返回:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值