目录
ARIMA乘法季节模型
序列的季节效应、长期趋势效应和随机波动之间有着复杂的相互关联性,简单的季节模型不能充分地提取其中的相关关系,这时常采用乘积季节模型。
例题1
我国1949-2008年年末人口总数(单位:万人)。选择适当的指数平滑法拟合该序列的长期趋势,并作5期预测。
代码:
加载数据:
a<-read.table('D:/桌面/大三下作业/时间序列/实验报告6/习题4-5.csv',sep=',',header=T) #读取数据
x<-ts(a$population,start=1949)
plot(x,main='时序图') #绘制时序图
返回:
由时序图可知,该序列为显著的线性递增序列,可以使用holt两参数指数平滑法进行趋势拟合和预测,或使用ARIMA ( 1,1,0)模型进行拟合和预测。
拟合模型:
fit1<-HoltWinters(x,gamma=F) #进行2参数指数平滑法进行拟合
fit1 #输出拟合结果
返回:
plot(fit1,main='拟合结果时序图') #对拟合结果绘制时序图
返回:
由于没有指定平滑系数的值,所以R基于最优拟合原则计算出平滑系数:
通过Holt两参数指数平滑法,不断迭代,得到最后一期的参数估计值为:
则未来任意k期的预测值为:
进行5期预测:
fore1<-forecast(fit1,h=5)
fore1
返回:
plot(fore1) #对预测结果绘制时序图
lines(fore1$fitted,col='red') #拟合值
返回:
例题 2
某地区1962-1970年平均每头奶牛的月度产奶量数据(单位:磅)。
(1)绘制该序列的时序图,直观考查该序列的特点(有无趋势和季节)。
(2)选择适当的指数平滑法预测下一年该地区奶牛的月度产奶量。写出指数平滑模型、预测模型,预测值和80%、95%的置信区间,绘制预测图。
(1)
加载数据:
a<-read.table('D:/桌面/大三下作业/时间序列/实验报告6/习题4-7.csv',sep=',',header=T)
x<-ts(a$ milk_yield,start=c(1962,1),frequency=12)
绘制时序图:
plot(x,main='时序图') #绘制时序图
返回: