无论什么题,第一步都是确定该题属于什么类型
对于不定积分不等式还是比较容易辨别的,就是会有积分符号,还有一种隐藏稍微深一点的就是无穷项的和,还有就是有不等号。
对于这类题其实归根结底就一种解题思路,就是统一格式,该思路就是要么去掉积分符号,要么把没积分符号的加上积分符号,然后合并成只有一个积分符号,利用积分的保号性质进行解答,总结就是:删和添。
常用的统一格式的方法有:
- 中值定理,这种定理在不等式中的应用前提是,题中有说一阶导数在讨论区间内不变号,可以是大于零,小于零或者等于零,对于定积分,由于积分中值定理中并没有出现导数,所以只要有说被积函数不变号时,也可以考虑这一点。
- 泰勒展开式,这一种一般是有高阶导数出现时考虑使用的,式子通过展开后,就可以将积分符号去掉
- 分布积分法,这个也是可以进行利用,只不过利用之前要求被积函数是可导的
常用的计算方法
- 常量变量化,就是将不等式当成函数进行讨论,这时主要应用的就是单调性和最值,其实只要进行变量化,题目就变成了求最值和零的关系了。(P28,3.122)选择这种方法的关键是容易求导,所以为了达到这个目的要求变量化的常量最好是上下限,而且在变量化时要将该常量对应的字母全部变量化(人话就是如果要把a变成x,那么全部a都要变成x),其次就是尽可能保证求导的后的结果里没有积分,如果有积分,一定是已知正负的,否则肯定不是采用这种方法进行解答
- 将积分用A代替,这一种方法主要就是为了方便合并,将积分外的式子并到积分内,所以这种题有一个很明显的特点就是,积分外的式子和积分内的式子格式是一样的(P28,3.123)
- 用泰勒公式进行被积函数的比较,之后再添加,积分符号,得到最终答案,这类题目的特点就是有高阶导,而且是复合函数,这种题的解法要结合2的方法(P28,3.124)
最后还有一种就是连续积分和离散求和的比较,这类题套路还是比较单一的,我们要先判断被积函数的单调性(这里假设递增),之后我们需要将连续函数化成长度为1的积分(k,k+1)的和,然后每个区间的积分,这时利用的知识点就是,由于是递增所以
所以由此可知对于这类题,只要出现单调二字基本就是这样解了,事实上只要知道区间里面的最大值和最小值就可以解,只不过就是单调的最大值和最小值刚好在端点处取到。这类题目一定会有的特点就是同一式子中的两个不同部分,之间的格式关系是导数和原函数的关系,因为一般对于积分都是想通过这种方式解出来,而求和的格式保持不变。所以当出现这一个特征时,要懂得运用这一个知识点。