在高中数学的第二章,A版教材称其为一元二次函数、方程和不等式,而B版教材仅称其为等式和不等式,这不是说A版教材的内容丰富,反而是说B版教材更突出数学的一般性。
不论你学哪一版本,都应该把这一章的内容在本质上看作是实数,等式、不等式的性质,乃至一元二次方程和不等式,都是实数性质的体现。在现代数学,我们有实数的严格定义,在实数的定义中包含了运算、序关系和连续性,而等式和不等式的性质就是序关系,以及序关系和运算的推论。而运算和连续性,也许教材默认了你已经知道,但我还是有必要再说一遍。
实数的运算本质上只有两个,就是加法和乘法,它们具有这些性质:设
实数的减法和除法可以定义为
设
结合相等关系的基本性质:
推出所谓等式的性质:
所谓序关系,就是
其余三个不等号可以定义为
从序关系和运算可以推出所谓不等式的性质:
以及比较两个数的大小的本质方法:
最后介绍实数的连续性,这是在中学数学默认的性质,实际上它的描述不算复杂:
设
这样的描述也许有些抽象,可以如此直观理解它:把实数集看作是一条直线,直线上的每个点代表一个实数,可以将这样的直线称为数轴。找到两个实数集的子集,它们就是数轴上的点集,使一个点集的一切点在另一个点集的一切点的同一侧,这时有且只有以下几种情况。
- 存在一个点不属于这两个点集,但是位于这两个点集之间。
- 这两个点集之间不存在别的点,也没有公共部分,但是在某一点集中有临界点。
- 这两个点集有公共部分,它是唯一的点,且作为两个点集的临界点。
一元二次方程和不等式的性质,基本不等式,这两部分将会在下一篇文章介绍。
习题:
- (选做)设
证明
- 设
证明
- 设
证明
- 设
证明
- 设
证明
- (选做)设
我们知道
试证明若
则上述
是唯一的,即
的必要条件是
解答:
1. 设
2. 由不等式的性质可知
3. 由不等式的性质可知
4. 当
等式右侧的两个因数均大于零,所以
请注意第四题是人教版A版教材的习题,以此为例,希望读者重视教材习题,不要轻视它们。
5. 由不等式的性质可知
6. 用反证法。假设
由
可知
于是