可微偏导数一定存在_【导数压轴题】“偏导数”与含参不等式

5b11c4d8b4feb3e23b70578d82887327.png

“证明不等式”是导数压轴题经常出现的题目,难度较大。

为什么说难度较大呢?因为这类题目通常没有通法,并且技巧性较强。

一般情况下,这类不等式只有一个变量,例如:

当然也不缺少带有参数的“莫名其妙”的不等式,例如以下题目(2018年福建省质检):

例1 已知函数

(1)讨论

的单调区间;

(2)若

,求证:当
时,

不得不说一下这一场“省质检”的惨案:

这场考试的数学据说“文科生拿到卷子后,以为拿到了理科的卷子;理科生拿到卷子后,以为拿到了竞赛的卷子”。大家也可以找来卷子,自己感受一下。

这道题目在后面会给出解答。

一、从简单的例子出发

在上面我们见到了一个“很简单”的不等式:

怎么把它变成所谓的“含参”不等式呢?见下题:设实数

,证明:

这个问题不难,直接放缩即可:注意到

,因此
,证毕。

但是这个问题背后还是有些值得深挖的东西的。

第一个不等号,也即

,实际上将
固定住,把
看作一个变量。

注意到“

这个变量”的取值范围是
,因此有

,其中
,此处将
视为常量。

单调递增。

因此

接下来只需证明

,而这是显然的。

这种方法有时候被叫做“主元法”,但是我比较喜欢把它叫做“偏导数”或是“偏微分”,因为听起来比较酷。

二、“偏导数”

像上面这样“固定”其它变量,先对一个变量“求导”,就叫做偏导数。

导数的运算法则和一般的求导一模一样,只是变量变了而已。

例如,如果有二元函数

,其中

求导则有
,对
求导则有

这个工具在高等数学中非常重要,但是高中一般不怎么涉及,因此在这里不多加介绍。

三、“偏导数”的应用

接下来,我们来看文章开头的那道题目:

例1 已知函数

(1)讨论

的单调区间;

(2)若

,求证:当
时,

(1)解答 此处省略,具体过程可以参考以下文章:

Dylaaan:【035】“偏导数”的应用(2018年福建省质检)​zhuanlan.zhihu.com
9fa2a6746373446402477219dcdd55aa.png

(2)证明 注意到

,因此我们先将
视为变量。

因此函数

单调递增,

,只需证明

,其中

到这里,变量只剩下了

,虽然看上去有些复杂,但比原不等式简单多了。

,其中

单调递增,在
单调递减

因此

,证毕。

事实上,构造出来的

为关于
的一次函数,其一次项
恒正。

因此可以知道

单调递减,甚至可以不用求导。

下面这道题目,是2017年福建省单科之间的压轴题:

(也许福建的老师比较喜欢这种题目吧,叹气)

例2 已知函数

(1)若

不存在极值点,求
的取值范围。

(2)若

,证明:

(1)解答 此题不难,此处省略。

(2)证明

,下证该不等式在
成立。

和上面的题目类似,我们先固定

。令

单调递增。

因此

,只需证明

考虑对

进行分类:

,则

,该不等式成立;

,则
,只需证明

因此

,该不等式成立。

综上,不等式

成立,证毕。

还不过瘾?再来几道题目。

这几道题目比较新,是2019年厦门市3月质检的题目。

(看来福建省的老师真的比较喜欢这种题目)

例3 设函数

(1)求

的极值;

(2)证明:

(1)解答 此题不难,此处省略。

(2)证明 注意到

因此只需证明

,其中

考虑对原不等式进行整理,

,到这里已经很简单了。

注意到

,其中

因此

,取等时当且仅当
,证毕。

例4 已知函数

(1)若

,求
的单调区间;

(2)若

,求证:

(1)解答 此处省略,具体过程可以参考以下文章:

Dylaaan:【031】指对不等式(2019年厦门3月质检)​zhuanlan.zhihu.com
9fa2a6746373446402477219dcdd55aa.png

(2)证明

因此

只需证明

,其中

这个不等式的证明还是有些难度的,但是有了第一步的题目,思路还算自然。

由(1)知:当

时,

代替
得:
,其中

因此

取等时当且仅当

,证毕。

此处应该特别注意:

时,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值