泛函分析笔记6:一致有界性原理


Hahn-Banach定理主要是用于泛函的延拓,在较小的子空间上满足某个性质之后我们就可以将对应的泛函延拓至整个空间。而这一节要讲的一致有界性原理恰如其名,主要讨论一族有界线性算子一致有界的条件。他也是后续讨论序列弱收敛性以及泛函弱星收敛性的基础。

1. Baire范畴定理

一致有界性原理的证明需要用到Baire范畴定理(也叫Baire纲定理)。

( X , d ) (X,d) (X,d),若 M ˉ ⊂ X \bar{M}\subset X MˉX 没有内点,则称 M M M无处稠密的。若 N = ∪ n ∞ N n N=\cup^\infty_n N_n N=nNn N n N_n Nn 均为无处稠密的,则称 N N N第一范畴。不为第一范畴的子集称为第二范畴

例子 1 X = R , d ( s , t ) = ∣ s − t ∣ X=\mathbb{R},d(s,t)=|s-t| X=R,d(s,t)=st,任意有限集均为无处稠密的,因此可数集均为第一范畴。

定理(范畴定理) ( X , d ) (X,d) (X,d)非空完备的,则 X X X 必为第二范畴的。

证明:第二范畴意味着 X X X 不能表示为可数个没有内点的集合的并集。假设 X X X 属于第一范畴,即 X = ∪ n M n X=\cup_n M_n X=nMn,并且不妨设 M n M_n Mn 均为闭集(否则可以取 X = ∪ n M ˉ n X=\cup_n \bar{M}_n X=nMˉn),并且 M n M_n Mn 都没有内点。

首先考虑 Y 1 = M 1 c Y_1=M_1^c Y1=M1c 为开集,因此存在某个 x 1 ∈ Y 1 , r 1 ∈ ( 0 , 1 / 2 ) x_1\in Y_1,r_1\in(0,1/2) x1Y1,r1(0,1/2) 使得 B ( x 1 , r 1 ) ⊂ Y 1 B(x_1,r_1)\subset Y_1 B(x1,r1)Y1。由于 M 2 M_2 M2 也没有内点并且为闭集,因此 Y 2 = B ( x 1 , r 1 ) ∩ M 2 c ≠ ∅ Y_2=B(x_1,r_1) \cap M_2^c \ne \varnothing Y2=B(x1,r1)M2c= 也为开集,因此可以找到某个 x 2 ∈ Y 2 , r 2 ∈ ( 0 , r 1 / 2 ) x_2\in Y_2,r_2\in(0,r_1/2) x2Y2,r2(0,r1/2) 使得 B ( x 2 , r 2 ) ⊂ Y 2 B(x_2,r_2)\subset Y_2 B(x2,r2)Y2。依此类推,可以找到 B ( x 1 , r 1 ) ⊃ ⋯ ⊃ B ( x n , r n ) ⊃ ⋯ B(x_1,r_1) \supset \cdots \supset B(x_n,r_n)\supset \cdots B(x1,r1)B(xn,rn),并且有 r n ∈ ( 0 , 1 / 2 n ) r_n\in (0,1/2^n) rn(0,1/2n)。容易验证 { x n } \{x_n\} {xn} 为柯西列,因此存在收敛值 x n → x , x ∈ X x_n\to x,x\in X xnx,xX。对于 k ≥ 1 k\ge1 k1 考虑 x n + k , x ∈ B ˉ ( x n , r n / 2 ) ⊂ B ( x n , r n ) x_{n+k},x\in \bar{B}(x_n,r_n/2)\subset B(x_n,r_n) xn+k,xBˉ(xn,rn/2)B(xn,rn),于是有 x ∈ B ( x n , r n ) , ∀ n ≥ 1 x\in B(x_n,r_n),\forall n\ge1 xB(xn,rn),n1,因此就有 x ∉ M n , ∀ n ≥ 1 x\notin M_n,\forall n\ge1 x/Mn,n1,因此 x ∉ X x\notin X x/X,导出矛盾。证毕。

2. 一致有界性原理

一致有界性原理:假设 X X XBanach 空间 Y Y Y 为赋范空间, T i ∈ B ( X , Y ) , ∀ i ∈ I T_i\in B(X,Y),\forall i\in \mathcal{I} TiB(X,Y),iI,并且对任取 x ∈ X x\in X xX
sup ⁡ i ∈ I ∥ T i x ∥ < ∞ \sup_{i\in\mathcal{I}} \Vert T_ix\Vert < \infty iIsupTix<
sup ⁡ i ∈ I ∥ T i ∥ < ∞ . \sup_{i\in\mathcal{I}}\Vert T_i\Vert<\infty. supiITi<.

NOTE:条件当中针对的是固定任意一个 x ∈ X x\in X xX T i x T_i x Tix 有界,也即是说所有的 T i x , i ∈ I T_ix,i\in\mathcal{I} Tix,iI 存在一个上界 c x c_x cx,该上界与 x x x 有关。对于线性泛函,我们只需要考虑 ∥ x ∥ = 1 \Vert x\Vert=1 x=1 的情况,但即便如此,一般而言由该条件并不能推导出对于所有的 ∥ x ∥ , c x \Vert x\Vert, c_x x,cx 存在一个共同的上界,因为随着 x x x 的变化 c x c_x cx 有可能趋于无穷。而一致有界性原理则说明当 X X X 为 Banach 空间的时候,一定存在这样一个上界,从而说明 ∥ T i ∥ \Vert T_i\Vert Ti 有上确界。

证明:根据上面的分析,我们在寻找 sup ⁡ i ∥ T i ∥ \sup_i\Vert T_i\Vert supiTi 的时候不能局限在 ∥ x ∥ = 1 \Vert x\Vert=1 x=1 的情况,下面的证明方法很巧妙。

首先考虑 X X X 完备,根据 Baire 范畴定理,不能表示为可数个没有内点的集合的并集。那么假如我们将其表示为可数个集合的并集,则一定存在某个集合有内点。因此考虑 M n = { x ∈ X , sup ⁡ i ∥ T i x ∥ ≤ n } M_n=\{x\in X, \sup_i\Vert T_ix\Vert \le n\} Mn={xX,supiTixn},因此就有 X = ∪ n ∞ M n X=\cup_n^\infty M_n X=nMn,一定存在某个 N ≥ 1 N\ge1 N1 使得 M N M_N MN 有内点,此时找到 x 0 ∈ M N , r > 0 x_0\in M_N,r>0 x0MN,r>0 使得 B ˉ ( x 0 , r ) ⊂ M N \bar{B}(x_0,r)\subset M_N Bˉ(x0,r)MN,并且 ∀ y ∈ X , ∥ y ∥ = 1 \forall y\in X,\Vert y\Vert=1 yX,y=1,都有
∥ T i ( x 0 ) ∥ ≤ N ,   ∥ T i ( x 0 + r y ) ∥ ≤ N , ∀ i ∈ I , ∥ y ∥ = 1 ⟹ ∥ T i y ∥ ≤ 2 N / r , ∀ i ∈ I , ∥ y ∥ = 1 ⟹ sup ⁡ i ∈ I ∥ T i ∥ ≤ 2 N / r \Vert T_i(x_0)\Vert \le N,\ \Vert T_i(x_0+ry)\Vert \le N,\quad \forall i\in\mathcal{I},\Vert y\Vert=1 \\ \Longrightarrow \Vert T_iy\Vert \le 2N/r, \quad \forall i\in\mathcal{I},\Vert y\Vert=1 \\ \Longrightarrow \sup_{i\in\mathcal{I}}\Vert T_i\Vert \le 2N/r Ti(x0)N, Ti(x0+ry)N,iI,y=1Tiy2N/r,iI,y=1iIsupTi2N/r
证毕。

共鸣定理:假设 X X XBanach 空间 Y Y Y 为赋范空间, T i ∈ B ( X , Y ) , ∀ i ∈ I T_i\in B(X,Y),\forall i\in \mathcal{I} TiB(X,Y),iI,设 sup ⁡ i ∥ T i ∥ = ∞ \sup_i\Vert T_i\Vert = \infty supiTi=,则 ∃ x ∈ X \exists x\in X xX 使得 sup ⁡ i ∥ T i x ∥ = ∞ \sup_{i} \Vert T_i x\Vert= \infty supiTix=,其中 x x x 即为 T i T_i Ti 的共鸣点。

NOTE:实际上共鸣定理就是一致有界性原理的逆反命题。

3. 应用举例

一致有界性原理的 Banach 空间假设是必不可少的,下面的例子将进行解释。

例子 2 X X X 为所有的多项式,即 p ∈ X p\in X pX 可以表示为 p ( t ) = a 0 + a 1 t + ⋯ a N t N p(t)=a_0+a_1 t+\cdots a_N t^N p(t)=a0+a1t+aNtN,定义 ∥ p ∥ = max ⁡ 0 ≤ i ≤ N ∣ a i ∣ \Vert p\Vert =\max_{0\le i\le N}|a_i| p=max0iNai。取一列线性泛函 f n ( p ) = a 0 + a 1 + ⋯ a n f_n(p)=a_0+a_1+\cdots a_n fn(p)=a0+a1+an,那么可以验证 f n ∈ X ′ f_n\in X' fnX 并且有 ∥ f n ∥ = n + 1 \Vert f_n\Vert=n+1 fn=n+1

此时显然我们有对任意固定的 p = a 0 + a 1 t + ⋯ a N t N ∈ X p=a_0+a_1 t+\cdots a_N t^N\in X p=a0+a1t+aNtNX ∥ f n ( p ) ∥ ≤ ∣ a 0 ∣ + ⋯ + ∣ a N ∣ \Vert f_n(p)\Vert \le |a_0|+\cdots+|a_N| fn(p)a0++aN,但是同时我们也有 sup ⁡ n ∥ f n ∥ = ∞ \sup_n \Vert f_n\Vert=\infty supnfn=,这似乎与一致有界性原理矛盾?其实原因是 X X X 并不是 Banach 空间。

考虑 p n ( t ) = 1 + 1 2 t + ⋯ + 1 n + 1 t n p_n(t)=1+\frac{1}{2}t+\cdots+\frac{1}{n+1}t^n pn(t)=1+21t++n+11tn,那么可以验证 { p n } \{p_n\} {pn} 为柯西列,但是其收敛值却并不在 X X X 内部( X X X 中只包含有限项的多项式),因此 X X X 不完备。

一致有界性原理还可用于讨论 Fourier 级数的收敛问题。

例子 3:考虑 t ∈ [ 0 , 2 π ] t\in[0,2\pi] t[0,2π],对于 [ 0 , 2 π ] [0,2\pi] [0,2π] 上的周期函数,很多时候我们用 Fourier 级数来表示他们,即
a 0 ( x ) = 1 2 π ∫ 0 2 π x ( t ) d t a m ( x ) = 1 π ∫ a 2 π x ( t ) cos ⁡ ( m t ) d t , m ≥ 1 b m ( x ) = 1 π ∫ a 2 π x ( t ) sin ⁡ ( m t ) d t , m ≥ 1 \begin{aligned} a_0(x) &= \frac{1}{2\pi}\int_0^{2\pi} x(t)dt \\ a_m(x) &= \frac{1}{\pi}\int_a^{2\pi} x(t)\cos(mt)dt, m\ge1 \\ b_m(x) &= \frac{1}{\pi}\int_a^{2\pi} x(t)\sin(mt)dt, m\ge1 \end{aligned} a0(x)am(x)bm(x)=2π102πx(t)dt=π1a2πx(t)cos(mt)dt,m1=π1a2πx(t)sin(mt)dt,m1
x n ( t ) = a 0 + ∑ m = 1 n ( a m cos ⁡ m t + b m sin ⁡ m t ) x_n(t)=a_0+\sum_{m=1}^n\left(a_m \cos mt+b_m\sin mt\right) xn(t)=a0+m=1n(amcosmt+bmsinmt) 即为 Fourier 级数。但是一个问题就是 Fourier 级数是否点点收敛到 x x x?答案是否定的,可以用一致有界性原理证明。

证明:考虑 f n ( x ) = x n ( 0 ) = a 0 ( x ) + ∑ m = 1 n a m ( x ) f_n(x)=x_n(0)=a_0(x)+\sum_{m=1}^n a_m(x) fn(x)=xn(0)=a0(x)+m=1nam(x),显然 f n ( x ) f_n(x) fn(x) C p e r [ 0 , 2 π ] C_{per}[0,2\pi] Cper[0,2π](连续周期函数)上的线性泛函。并且有
f n ( x ) = 1 2 π ∫ 0 2 π ( 1 + 2 ∑ m = 1 n cos ⁡ ( m t ) ) x ( t ) d t = 1 2 π ∫ 0 2 π sin ⁡ ( n + 1 / 2 ) t sin ⁡ ( t / 2 ) x ( t ) d t = 1 2 π ∫ 0 2 π Q n ( t ) x ( t ) d t \begin{aligned} f_n(x)&=\frac{1}{2\pi}\int_0^{2\pi} \left(1+2\sum_{m=1}^n \cos(mt) \right)x(t)dt \\ &= \frac{1}{2\pi}\int_0^{2\pi} \frac{\sin(n+1/2)t}{\sin(t/2)}x(t)dt= \frac{1}{2\pi}\int_0^{2\pi} Q_n(t)x(t)dt \\ \end{aligned} fn(x)=2π102π(1+2m=1ncos(mt))x(t)dt=2π102πsin(t/2)sin(n+1/2)tx(t)dt=2π102πQn(t)x(t)dt
因此 ∥ f n ∥ ≤ ∫ 0 2 π ∣ Q n ( t ) ∣ d t \Vert f_n\Vert \le \int_0^{2\pi} |Q_n(t)|dt fn02πQn(t)dt。由于 Q n ( t ) Q_n(t) Qn(t) [ 0 , 2 π ] [0,2\pi] [0,2π] 上只有有限个零点,因此可以构造合适的 x x x 证明 ∥ f n = ∥ ≥ 1 2 π ∫ 0 2 π ∣ Q n ( t ) ∣ d t \Vert f_n=\Vert \ge \frac{1}{2\pi}\int_0^{2\pi} |Q_n(t)|dt fn=2π102πQn(t)dt。而
∫ 0 2 π ∣ Q n ( t ) ∣ d t ≥ 2 ∫ 0 ( 2 n + 1 ) π ∣ sin ⁡ t ∣ t d t ≥ 2 ∑ k = 0 2 n ∫ k π ( k + 1 ) π ∣ sin ⁡ t ∣ t d t ≥ 2 ∑ k = 0 2 n ∫ k π + π / 4 k π + 3 π / 4 1 t d t ≥ ∑ k = 0 2 n 4 2 8 k + 3 \begin{aligned} \int_0^{2\pi} |Q_n(t)|dt &\ge 2\int_0^{(2n+1)\pi} \frac{|\sin t|}{t}dt \ge2\sum_{k=0}^{2n}\int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t}dt \\ &\ge \sqrt{2} \sum_{k=0}^{2n}\int_{k\pi+\pi/4}^{k\pi+3\pi/4} \frac{1}{t}dt \\ &\ge \sum_{k=0}^{2n} \frac{4\sqrt{2}}{8k+3} \end{aligned} 02πQn(t)dt20(2n+1)πtsintdt2k=02nkπ(k+1)πtsintdt2 k=02nkπ+π/4kπ+3π/4t1dtk=02n8k+342
因此有 sup ⁡ n ≥ 1 ∥ f n ∥ = ∞ \sup_{n\ge1}\Vert f_n\Vert=\infty supn1fn=,由一致有界性原理,存在 x 0 ∈ C p e r [ 0 , 2 π ] x_0\in C_{per}[0,2\pi] x0Cper[0,2π] 使得 sup ⁡ n ≥ 1 ∣ f n ( x 0 ) ∣ = ∞ \sup_{n\ge1} |f_n(x_0)|=\infty supn1fn(x0)=,因此 x 0 x_0 x0 的 Fourier 级数在 t = 0 t=0 t=0 处不收敛。证毕。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
泛函分析笔记 0:绪论
泛函分析笔记 1:度量空间
泛函分析笔记 2:赋范空间
泛函分析笔记 3:内积空间
泛函分析笔记 4:Hahn-Banach定理
泛函分析笔记 5:Hahn-Banach定理的应用
泛函分析笔记 6:一致有界性原理

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
泛函分析和统计学在很多领域都有应用,比如信号处理、图像处理、机器学习等。其中,泛函分析主要用于研究函数空间上的性质,而统计学则主要研究数据的收集、分析和解释。 一个结合了泛函分析和统计学的实例是函数逼近问题。函数逼近是指用一个简单的函数来近似描述一个复杂的函数。在这个问题中,泛函分析的角色是提供一些有用的工具,比如Hilbert空间、正交基、最小二乘法等,来研究函数逼近的性质。而统计学的角色则是提供一些方法来评估逼近的质量,比如均方误差、交叉验证等。 具体来说,我们可以考虑一个回归问题,即给定一组数据点$(x_1,y_1),\ldots,(x_n,y_n)$,要求用一个函数$f(x)$来拟合这些数据点。这个问题可以表示为最小化目标函数$$ \sum_{i=1}^n (f(x_i)-y_i)^2 $$ 这个问题可以用经典的最小二乘法来解决,即找到一个函数$f(x)$,使得目标函数最小。但是最小二乘法并不能保证得到的函数$f(x)$的质量很好,因为它只是通过拟合数据点来得到函数$f(x)$,而没有考虑函数本身的性质。 这时,泛函分析就可以提供一些工具来改进函数逼近的质量。比如,我们可以用Hilbert空间来描述函数的性质,并通过正交基来表示函数。然后,我们可以用一些正交多项式(比如Legendre多项式、Chebyshev多项式等)来作为正交基,来得到一个更优秀的函数逼近结果。 最后,统计学可以提供一些方法来评估函数逼近的质量。比如,我们可以用交叉验证来评估模型的预测能力,以确保得到的函数逼近结果具有一定的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值