创建一个1位全加器_年轻人的第一个加法器

本文详细介绍了如何从基本逻辑门出发,设计并实现一个1位全加器。通过理解加法运算的布尔代数表达,结合AND、OR和NOT门,逐步构建出能进行二进制加法的电路。这个过程不仅适合初学者理解数字逻辑,也为后续更复杂的加法器设计打下基础。
摘要由CSDN通过智能技术生成
在开始我们今天的推送前,我们先来复习一下 竖式加法的基本法则,捡回那些已经还给小学老师的数学知识。对于在座的各位大学生来说,这应该不算什么难事… 1635aa175936560d4e34e5c961064fe3.png c048f168a468af1b0a5e015a0de0e674.png 事实上,这些进位的法则对于二进制加法也是成立的。只不过在二进制计算中,满2就进1;而在熟悉的十进制计算中是满10进1。 77456226d58ed76ba6d1e5983cacad65.png
既然我们有了 足够的数学知识,那就让我们开始设计吧。首先,让我们设计一个最简单的电路, 它能相加两个一位二进制数。这个任务非常简单,让我们列出他的所有可能(真值表)。
算式输入输出
加数A加数B本位结果S进位C
0+0=00000
1+0=11010
0+1=10110
1+1=10(BIN)1101
看起来,这将会是一个有两个输入和两个输出的电路。既然真值表已经明确,理论上电路已经可以直接画出(方法见推送设计一个异或门)。如果你不想用这么暴力的方法,那就需要仔细地观察一下这个电路的输入与输出。
如果我们先只观察S的输出,这种规律似乎似曾相识。 b5dacabe57387bf7beb1f915fed7ce78.png没错,这和异或门的真值表是一致的!(见设计一个异或门)

bdec789e3efbd166ba40f3ab493ba15a.png

2b7496684653ac8e24654f02ffc9474b.png而如果只观察C的输出,就会发现,这是一个简单的与门! 9dc940d7c1fe1b564db34a4038204a0d.png

7dd67b019bbb1a4358d96d7ab263bf0e.png

因此,我们只需要两个简单的门,就可以设计出一个能相加两个一位二进制数的电子玩意儿! 42393b83baa307ea21175748b67eb511.png他有个 逼格很高却莫名所以的名字,半加器。 756af1b9d878ad03f7d912ed7b06d01f.png
之所以 它叫半加器,或许是因为它只完成了位加法的 一半功能。我们已经知道,一个位的计算不仅要相加两个加数相应位上的数,而且还要再加上来自上一位的进位。

c4386a121505202b0f9857757eda094f.png

因此,我们还需要一个新的电路, 他能相加三个一位二进制数,包括一位进位。通过思考与分析(你可以自己想一想,比如列举真值表),我们找到了一种电路,他满足了我们的设计目标(你可以代入值试一试): 15c4df8517e68616aa8f575a539e6a18.png这类电路叫做 全加器。 c1890096d22387b7f7c776df742e633b.png       全加器完整地实现了一位位加法所需的所有功能: 260dcd85a9b2d743f22b5718c3294cc0.png
至此,我们离实现完整的加法器仅有一步之遥:事实上,我们只需要简单的串联全加器… ecfe6316c7cc121a576fc00b59b76f7f.png现在,我们完成了一个可以计算两个多位二进制数的加法器!(位数取决于串联的全加器的个数)这类加法器的优点在于可扩展性强,简单地串联全加器就可以提高参与运算的二进制数的位数;在这种加法器中,进位(C out)依次向高位传递,因此又称 波纹进位加法器。当然,这种设计的一个小小缺点是计算速度会比较慢,正因为要依次等待低位的进位。 d0f22564a05b32913abfc29964f51e60.png根据这个原理,在mc中也可以建造出一个加法器。 8436dce7d0a4a363eb393df6129ed3af.pngRef & Note为了便于理解,部分用语可能不太严谨部分图片来自网络本文参考自《数字电路技术基础》 解锁成就:我的一大步,ALU(算术逻辑单元,CPU的一部分)的一小步...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值