# coding:utf8
import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt
def preprocess(gray):
# 1. Sobel算子,x方向求梯度
sobel = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize=3)
# 2. 二值化
ret, binary = cv2.threshold(sobel, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
# 3. 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 9))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (24, 6))
# 4. 膨胀一次,让轮廓突出
dilation = cv2.dilate(binary, element2, iterations=1)
# 5. 腐蚀一次,去掉细节,如表格线等。注意这里去掉的是竖直的线
erosion = cv2.erode(dilation, element1, iterations=1)
# 6. 再次膨胀,让轮廓明显一些
dilation2 = cv2.dilate(erosion, element2, iterations=2)
# 7. 存储中间图片
cv2.imwrite("binary.png", binary)
cv2.imwrite("dilation.png", dilation)
cv2.imwrite("erosion.png", erosion)
cv2.imwrite("dilation2.pn
使用传统算法进行文本检测,opencv-python,cv2.findcounter
最新推荐文章于 2024-10-12 17:44:22 发布
本文介绍了如何使用OpenCV的Python接口(cv2)进行文本检测,重点在于应用传统算法,通过cv2.findContours函数实现。内容可能包括步骤解析和示例代码,旨在帮助读者掌握文本检测技术。
摘要由CSDN通过智能技术生成