▽算符在球坐标系_球谐函数

本文探讨了球坐标系中拉普拉斯方程的解,重点在于球谐函数与连带勒让德多项式的关系。通过分离变量的方法,详细阐述了在极角坐标下球谐函数的特性。
摘要由CSDN通过智能技术生成

(建议阅读原文)

球谐函数预备知识 球坐标的拉普拉斯方程, 连带勒让德多项式
   当球坐标中的拉普拉斯方程(球坐标系中的拉普拉斯方程)分离变量后, 关于极角

的函数为连带勒让德多项式
, 方向角函数为
. 我们定义
球谐函数为1

其中
为整数,
是归一化系数, 使得
在单位球面上的面积分等于 12.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值