▽算符在球坐标系_球坐标系中的角动量算符

本文探讨了量子力学中角动量算符在球坐标系的表现,详细介绍了球坐标系下的(L_x)、(L_y)、(L_z)和(L^2)算符,并通过拉普拉斯算符展示了它们与哈密顿量的关系。同时,阐述了角动量算符的本征函数——球谐函数及其解。
摘要由CSDN通过智能技术生成

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

预备知识 角动量(量子)

本文使用原子单位制.在量子力学中,我们一般把角动量算符放在球坐标中表示.把轨道角动量算符在直角坐标系中的定义(式 2)通过链式法则用球坐标表示(留作习题).

\begin{equation}

L_x = \mathrm{i} \left(\sin\phi \frac{\partial}{\partial{\theta}} + \cot\theta\cos\phi \frac{\partial}{\partial{\phi}} \right)

\end{equation}

\begin{equation}

L_y = \mathrm{i} \left(-\cos\phi \frac{\partial}{\partial{\theta}} + \cot\theta \sin\phi \frac{\partial}{\partial{\phi}} \right)

\end{equation}

\begin{equation}

L_z = - \mathrm{i} \frac{\partial}{\partial{\phi}}

\end{equation}

\begin{equation}

L^2 = L_x^2 + L_y^2 + L_z^2 = -\frac{1}{\sin\theta} \frac{\partial}{\partial{\theta}} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值