▽算符在球坐标系_球坐标系中的角动量算符

本文探讨了量子力学中角动量算符在球坐标系的表现,详细介绍了球坐标系下的(L_x)、(L_y)、(L_z)和(L^2)算符,并通过拉普拉斯算符展示了它们与哈密顿量的关系。同时,阐述了角动量算符的本征函数——球谐函数及其解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

预备知识 角动量(量子)

本文使用原子单位制.在量子力学中,我们一般把角动量算符放在球坐标中表示.把轨道角动量算符在直角坐标系中的定义(式 2)通过链式法则用球坐标表示(留作习题).

\begin{equation}

L_x = \mathrm{i} \left(\sin\phi \frac{\partial}{\partial{\theta}} + \cot\theta\cos\phi \frac{\partial}{\partial{\phi}} \right)

\end{equation}

\begin{equation}

L_y = \mathrm{i} \left(-\cos\phi \frac{\partial}{\partial{\theta}} + \cot\theta \sin\phi \frac{\partial}{\partial{\phi}} \right)

\end{equation}

\begin{equation}

L_z = - \mathrm{i} \frac{\partial}{\partial{\phi}}

\end{equation}

\begin{equation}

L^2 = L_x^2 + L_y^2 + L_z^2 = -\frac{1}{\sin\theta} \frac{\partial}{\partial{\theta}} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) -

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值