原标题:SPSS技术:多重线性回归模型;极端值与多重共线性
欢迎关注天善智能微信公众号,我们是专注于商业智能BI,大数据,数据分析领域的垂直社区。 对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入头条数据爱好者交流群,数据爱好者们都在这儿。
基础准备
前面我们介绍了多重线性回归模型的基础内容及SPSS软件的操作过程,同时也介绍了如何通过各种指标判断多重线性回归模型的拟合质量如何。
数据分析技术:多重线性模型;也难也不难的建模从这里开始吧!
SPSS分析技术:多重线性方差分析;自主创业不能盲目,你做好市场调研了吗?
SPSS分析技术:回归模型的自变量筛选方法;全军出击OR稳扎稳打步步为营
如果拟合质量不好,可能存在的问题主要有以下两个方面:
极端值(强点)的影响。我们都知道,在线性回归分析中,自变量回归系数的确定主要采用最小二乘法,而最小二乘法的原理就是兼顾每个数据点的影响,使得最后的离差平方和最小。最小二乘法就好比生活中的老好人,谁都不得罪,与某些小团体内的人人或者特别有个性的离群者都保持相同程度的联系,这时小团体的人很可能因为看到其与离群者的关系而刻意疏远他。用最小二乘法拟合得到的多重线性回归模型同样如此,会极大的受到极端值的影响而失去客观和准确性。
自变量间的多重共线性问题。多重共线性指自变量间存在线性相关关系,也就是说自变量间可以互相建立线性回归方程。若自变量间存在多重共线性关系,那么得到的多重线性回归模型也是