SPSS多元线性回归及逐步回归教程

点击分析->回归->线性会出来如图ff3eb5693870411095e64e1acfef0de1.png

 选择自变量,因变量。点击左侧efdea7ff22ff440898229845090d4fbb.png然后点击fd1844b1f83a4520aa6daa6e1562281c.png即可选择变量并将它添加到自变量、因变量。

点击统计,需要额外勾选共线性诊断和04313f94bed840d6a85d12051039369b.png然后点击继续,点击27ce2cf370c64719a2a77035cb419bcf.png967d42a979564e5b9c498d74141b4fdb.png

设置成如图7066eb4ad29a46d5b33c8b125a8ec3c8.png 。

解释:----------------------------------------------------------------------------

04313f94bed840d6a85d12051039369b.png起到检验残差是否独立的左右

 bc6fb45d16e24139bd97b73ae8d2f9de.png检验自变量间是否存在共线性

99c8f4dd5a5145f78f4f6326260a910d.png绘制残差图,x标准化预测值,Y残差。

--------------------------------------------------------------------------------------------------------------

点击确定53a1855194c34ccca0716734ff408c10.png

 出现e427905bdf784ea8b4e4c7113ccdfd61.png

 注意:92d0ee5cd0b4429c85a4d1587aae4686.png就是04313f94bed840d6a85d12051039369b.png,值越接近2越相互独立。

b89c6b2fc4cf4635ba09c742ce68ced6.png残差独立正态。

1e6f1b1e2c4941ed85aeb37c44622a30.png点越接近越落在直线上表明越正态分布。

513c0e8438564dafa5984f54fa8bd0ff.png在0上下随机分布,没有很多的离群值,没有趋势,残差稳定。

5999e32dd70849089ce8c842f7aec36a.pngSig(显著性)<0.001表明结果很好

6356e7b0e1c64ec9a114dfc56d74599a.pngR方越接近1越好

41682894717443f0b2184208287a8deb.png为多元线性回归回归方程y=-33.960+6.199X菌盖厚度+.....

f151253f65014a3598a21c3dfa2cbaa7.png表示自变量对因变量的影响程度,数字越大表示影响程度越大。 

多重共线性判断方法:

A.

58e86da31736414f9df44508dbd89458.png容差<0.2表述存在多重共线性,VIF(方差膨胀系数)为:1/容差,一半>5表示存在多重共线性,这个根据学科不同,值也有变化。

B.

3e72a9aff5494c8ca2a4ec24901b31d5.png

 特征值那一栏,如果提取的多个主成分特征值相对集中在某一个或几个主成分上,其他主成分趋于0,就存在多重共线性,一般条件索引>30就存在多重共线性。

如果一个主成分同时在多个自变量上有较大方差比例,如3,4,5就有多重共线性.

有多重共线性多元线性回归不准确。

 解决方法:逐步回归分析

833989cf3d3a4860bfb7824313aa9e22.png

方法那一栏改成a41dc9e1413f43a4a0d897f11adc91ec.png,其它的不发生改变。

显著性水平在这设置:71b8fced9ea5465b9d0aac47705fbe8c.png

 注意:d1153843ed1643719aaf44a099c100fe.png

 看清楚,常量要排除,多重共线性看自变量

 a81c8d0c9c5045abae5005a727817263.png

 所以这个不存在多重共线性。

  原学习视频:多元线性回归+逐步回归

937a83adad19446896406c30a215078b.png标准系数就是直接通径系数,比较需要看绝对值。

SPSS中进行多元线性回归分析的一个实例可以是通过一个人的年龄、体重、心率和性别来预测其VO2 max(最大摄氧量)及其可信区间。在进行多元线性回归分析之前,我们需要进行散点图的绘制,以确保因变量与自变量之间存在线性趋势。如果发现因变量与某个自变量之间呈现非线性趋势,可以尝试进行变量转换来修正。变量转换后,需要重新绘制散点图以确保线性趋势仍然存在。\[1\] 多元线性回归的另一个作用是根据构建的回归模型来估计和预测因变量的值及其变化。在这个实例中,我们可以利用多元线性回归模型来预测一个人的VO2 max,并给出其可信区间。通过SPSS软件进行操作,可以得到相应的结果和输出。\[2\] 在多元线性回归的结果输出中,Coefficients表格显示了共线性诊断的两个统计量,即Tolerance(容忍度)和VIF(方差膨胀因子)。一般来说,如果Tolerance小于0.2或VIF大于10,则提示自变量之间可能存在多重共线性的问题。在这个实例中,各自变量的Tolerance均大于0.2,VIF均小于10,表明不存在共线性问题。\[3\] 因此,通过SPSS进行多元线性回归分析可以帮助我们预测一个人的VO2 max,并给出其可信区间。同时,通过共线性诊断可以判断自变量之间是否存在多重共线性的问题。 #### 引用[.reference_title] - *1* *2* *3* [多重线性回归的结果解读和报告(SPSS实例教程)](https://blog.csdn.net/weixin_35042546/article/details/112830558)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值