泊松分布记为_概率论学习笔记(1):一维随机变量的分布经典例子

本文介绍了概率论中的一维随机变量分布,包括离散型的二项分布、泊松分布、超几何分布和负二项分布,以及连续型的正态分布、指数分布和威布尔分布。通过实例详细阐述了各种分布的性质和应用场景。
摘要由CSDN通过智能技术生成

离散型随机变量:

二项分布:(伯努利分布)

一个事件A发生的概率为p,把这个试验独立地重复n次,则A发生i次的概率为:

即表示A发生了i次,A没有发生(n-i)次,值得注意的地方是前面还应该乘一个系数

,因为A发生的i次是在n次中的位次是不确定的,根据排列组合可以知道一共有
种方式,故A发生i次的概率如上式所示。

举个经典的栗子:

掷硬币,正反面的概率都是0.5,那现在掷10次,问正面恰好出现5次的概率是多少?

根据上述介绍我们可以得到:

这十次实验中有五次是正面,这五十次在一百次的排位中共有

种情况,所以概率为:

泊松分布:

一般用在当X表示在一定的时间和空间内出现的事件个数这种情况的描述。

通过一个示例进行说明:

现在我们对一定时间内某交通路口所发生的事故个数的概率进行求解 。

首先,将进行观察的这段时间记为[0,1),取一个很大的自然数n,将这个时间段[0,1)分为等长的n段:

并且我们规定有:

1,在每段

内,恰好发生一个事故的概率,近似地与这段时间的长
成正比,我们将概率取为
。我们可以知道的是,若n非常大,那么在每段
内,很短暂的时间中,不可能发生两次及以上的事故,因此,在每段
内不发生事故的概率为:

2,我们假设对于每段

,各段是否发生事故是独立的。

现在我们可以看到,在[0,1)时段内发生的事故数X可以被视作在n个小段

内有事故的时段数,即X应该服从二项分布
,所以:

现在,将

取极限,就可以得到确切的答案(因为一开始时,我们认为n为一个很大的数,现在让他足够大),此时:

即泊松分布的概率分布为:

超几何分布:

以X记从N个产品中随机抽出n个里面的废品数,抽出后不返回,则X的分布为:

按照古典概率不难得出该式子,从N个产品里面取n个不同的取法有

种,

从M个废品里面取到m个的取法有

种,

从其余N-M个合格品中取n-m个的取法有

按照古典概率的计算方式即可得到上式X的概率分布。

值得注意的是当N足够大的时候,每一次减少的m对于总量影响过低时,我们可以近似认为X服从二项分布。

负二项分布:

负二项分布是二项分布另一个角度切入得到的分布

在二项分布中,是固定了总的抽样个数n,而把废品个数X作为变量,负二项分布是首先固定废品个数r,而将总抽样次数减去r作为变量。

举个例子:

在抽样检查某产产品的废品率p的大小时,有两种方法:

(1)从该厂产品中抽出若干个,检查其中的废品数X(该方案即是二项分布)

(2)指定一个自然数r,然后一个一个的从该厂产品中抽样检查,直到发现第r个废品为止,以X记当前抽出的合格品数量。

第二种情况就是负二项分布,当每次的抽取结果是独立的时候,可以看出,若要{X=i}这个事件发生,则需要以下两个情况同时发生:

①在前i+r-1次抽取中,恰有r-1个废品

②在第i+r次抽出废品

这两个事件的概率分布分别为b(r-1;i+r-1,p)以及p

根据独立性可以得到:

当r=1时,因为

,所以上式变为:

呈现出公比为1-p的几何级数,故这个分布又被称为几何分布


连续型随机变量:

不同于离散型随机变量,因为连续型随机变量充满一个区间,故无法一一排出,因此使用概率密度函数进行描述。

由于概率分布函数的定义,可以得到,事件

(h>0)的概率应为F(x+h)-F(x)

为在(x,x+h]区间内
单位长所占有的概率。

当h趋近于0时,就可以得到该点单位长的概率,即

对于任意a<b,有:

正态分布:

如果一个随机变量具有概率密度函数:

则称X为正态随机变量,并记为

此处的

为常数,称为这个分布的“参数”,
为任意实数值,

概率密度函数会变成:

N(0,1)的密度函数,被称为”标准正态分布“,

其密度函数和分布函数通常记为:

任意的正态分布可以轻易的转换为标准正态分布:

,则:

举个例子:

,计算P(-1<x<2),根据上式可以得到:

因为(X-1.5)/2~N(0,1),故:

又因为

所以:

指数分布:

指数分布常见在”寿命分布“中,假设有一批电子元件,其寿命X为随机变量,求解其分布函数F(x)。

首先,我们先讨论无”无老化“的情况,即元件在时刻x尚为正常工作的条件下(即X>x),其失效率总保持为某个常数

,与x无关。

用条件概率的形式,可以将上述假设的失效率表示出来:

又因为:

所以:

又因为

所以:

当h趋近于0的时候,有

解这个微分方程得到:

的时候,F(x)为0,代入初始条件F(0)=0(即寿命X小于等于0,概率为0)可以得到指数分布的定义:
若随机变量X有概率密度函数:
当x>0时,

当x<0时,

则称X服从指数分布,其中

威布尔分布:

现在我们讨论”存在老化“的情况:

考虑到老化的情况,失效率应该随时间的增加而增加,不再为常数,一般我们将失效率取为一个x的增函数:

,其中的
为常数

现在寿命分布F(x)满足微分方程:

代入初始条件F(0)=0,可以解得:

并把
记为
可以得到

当x>0时,威布尔分布的概率密度函数为:

时,f(x)为0

其实,不难发现,指数分布就是威布尔分布当

时的特例

均匀分布:

设随机变量X有概率密度函数:
,当
时,

x为他值时,f(x)=0
则称X服从[a,b]上的均匀分布,并记作X~R(a,b)

这里的a,b均为常数

均匀函数的分布函数为:

,当
时,

时,F(x)=0

时,F(x)=1

均匀分布概率密度函数和概率分布函数的图像如下所示:

acb4d922241d9a98f8df7b11a2198be5.png
概率密度函数图

eda3b8d33a873f3fd38f7f4761f3d9de.png
概率分布函数
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值