一阶微分方程的物理意义_(广义)全微分方程

9bf73a972b90e1fea53d412999e171c1.png

本篇来源于《微分方程(解法和解)》[1](E·卡姆克)中15.1全微分方程一节。当然,原文中没有“广义”一词,因此在标题上加了一个括号。

原文极其简洁。甚至几行便可引用完这一节的全文:

全微分方程。微分方程

称为全微分方程,如果存在着函数
,使得

对于变量
成为恒等。因为某一
次可微函数
,当且仅当

时,是方程
的解,所以全微分方程总可以化为较低阶的方程。

如果
具有直到
阶为止的连续偏导数,并且如果要求
具有直到二阶为止的连续偏导数,则使得微分方程
是全微分方程的条件如下:假设

这时,函数
应当与
无关,而
应当等于
,特别是,
只能线性地包含在
中。

这是老工具书类型教材一贯的表述语言…但是去稍微查找一下有关类似全微分方程的文献,却没能找到这样的。能翻到的都是高阶变系数线性的“全微分方程”,有点失望。

于是本篇即为对以上内容的解读,以及尝试按照二元全微分方程的路线构建出部分多元(其实是三元)全微分方程的分项组合法。不能保证完全正确,推导证明过程很可能是有很大漏洞的,不过方法应该是“可用”的/躺。

当尝试使用这些方法去解一些具体的问题(二阶微分方程)的时候,骤然发现这似乎并没有什么用,因为有用的高阶方程都已经命上名了…而且遇见这样一个残破的轮子肯定也是前人(dalao)尝试造过然后摇摇头说造不了的。于是本文也仅供君一乐/叹气。


正文

引子

首先回顾一下二元的全微分方程。此时的全微分方程有一个更广泛的名字:恰当微分方程。其形式为:

这样的形式可认为是由

认为

二者“平权”,乘上
而来。由于
可视为全微分的形式(如果有
)。因此对于二元的恰当微分方程总以此形式进行处理。

但是实际上称一个方程是“一阶微分方程”,依旧是以

的形式判定。可见,
形式的全微分方程是不易按照阶数去推广的:一个二阶的全微分方程按
书写是怎样的形式?一阶微分方程可以有
的书写表达,但二阶却万
不可出现

而对于

,很简单的就可以进行推广。一个
稍有限制
阶微分方程总
认为可有形式:

其中

为函数
,而不能出现
本身(实际上这里是全微分方程的第一个判定了)。其中,我们可以将
(包括首项
)这样的项命名为“旗标项”。后面可以看见,旗标项其实是理想化的产物。

当此微分方程其满足一定形式的时候,是全微分方程。先考察方程

。显然地,对于某一函数
,若仅认为其关于
为自变量,则对
求导:

若系数对应相等:

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值