一阶微分方程的物理意义_常微分方程学习笔记(9)

ba81ca5f28fd674f8b97d5aae2410647.png

经过长时间的消化,我来尝试更一下微分方程的笔记好了。这一章大概是对一些比较前沿的领域的入门介绍,概念非常多,许多定理也不给证明,挺难受的。为了叙述的严谨性,有时候会略微增加一点书上没有的东西。

看这一章时最好调动自己的直觉,有一些东西严格定义很晦涩,却是可以直观想象的。笔记比较长,要看的话建议分两段。

封面是番剧『宇宙よりも遠い場所』的图,可以了解一下。(好像变成了番剧推荐2333)

第八章 定性理论与分支理论初步

再安利一下,下面视频的部分内容对于建立这一章内容的感性认识比较有帮助。

【维度】数学漫步第一季(熟肉)[2008]_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
d8ae3111243ad580c3daa7100840e5a8.png
维度:数学漫步2—混沌_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
1db0906e79f6a223a604583eb6d6054d.png

在最开始我们要先引入一些基本概念,在后面十分常用。这就是动力系统,相空间和轨线的概念。

8.1 动力系统,相空间和轨线

我们从物理开始。假设在

维空间里有一个质点,它在时刻
的坐标为
,运动速度为
。则可以得到方程

这是一个自治的微分方程。假设它满足解的存在唯一性条件,则它在初值条件

下有唯一解
。这个解描述了质点在时刻
经过点
的运动。我们称
取值的空间(
)为
相空间,称
取值的空间(
)为
增广相空间。可以在增广相空间中画出线素场(点
处短线段与向量
共线),上述方程的解在增广相空间中确定了一条曲线,处处与线素场相切。

在动力系统理论中我们更习惯使用向量场(物理学会叫它速度场)的提法,也就是说在相空间的每一个点

处有一个向量
与之对应。如果考虑相空间,上述解在相空间内描绘了一条曲线,这曲线处处与向量场相切,我们称它为
轨线。轨线在上面的物理描述中就是质点运动的轨迹,而积分曲线是所谓的「时空线」。通常规定轨线的方向是
增大的方向。

轨线与方程的积分曲线有简单的关系:轨线是积分曲线在相空间上的投影,前者是

维空间中的曲线,后者是
维空间中的曲线。大家可以利用
的情形来想象。

98d015fa1bab355a70035ba85b005000.png

所谓相图是指轨线族的结构图。定性理论正是要研究微分方程相图的拓扑结构,因此又被称为微分方程的几何理论。

下面引入奇点和闭轨的概念,这是定性理论研究的两大重要模型。

如果

是速度场
的零点,即
,则方程有一个定常解
。这个点叫做
平衡点,意味着质点的静止状态。这个解在相空间里是一个点
,在增广相空间里是一条垂直于相空间的直线。此时点
就是一条退化的轨线。由于后面我们会在这个点附近看到许多奇怪的现象,又称它为
奇点

如果对于某个

,解
是非定常周期的,则它在相空间中的轨线是闭曲线,称为
闭轨。质点在闭轨上不断做着周而复始的运动。

对奇点与闭轨的分析是两大重点问题,下面看一个例子。

质点在

平面上运动,其速度的两个分量满足
。分析这个质点可能的轨线族。

用极坐标代换,设

。代入计算得

解得

。令
,则得
。设单位圆周
,则
内部(外部)等价于
。于是

(1)若

,则轨线是唯一的奇点

(2)若

上,则轨线就是逆时针方向的圆周
。这是唯一的闭轨。

(3)若

内且不同于奇点,则轨线在圆内,且当
时逆时针盘旋趋于奇点,
时顺时针盘旋趋于圆周

(4)若

外,则轨线在圆外,且当
时逆时针盘旋趋于远处,
时顺时针盘旋趋于圆周

大家可以画一画相空间以及增广相空间中的情况以方便理解。

1cd02544fb36a51babb88f2bf4571355.png

87a7f77ebc25af6c28d8094e901e70b2.png
两种轨线的形状

上述的微分方程

称为一个
动力系统。动力系统有下面的性质:

1.积分曲线平移不变性

把积分曲线沿

轴平移任意长度,所得依然是积分曲线。这由自治性就可以得知。

2.过相空间每一点轨线的存在唯一性

存在性由解的存在性保证,至于唯一性,假设有两条轨线都过一点,考虑它们对应的积分曲线,这两条曲线可以通过平移使得它们交于一点(性质1),但是由解的唯一性,这两条积分曲线必然是同一条,从而投影后的轨线也是同一条。

这两条性质还说明,每条轨线可以对应于一族积分曲线,这些积分曲线互为平移。由性质1,对于任意一个解

,函数
也是解,且满足相同的初值条件。从而由唯一性,
。从而在解族中只需要考虑初始时刻
的解。下面记

3.群的性质

在运动中,质点的轨迹如果确定,那么从固定起点开始运动

秒与先运动
秒再运动
秒是一样的。用式子写出来就是:

下面给出数学的证明:由性质1知

都是方程的解,而且
的初值都等于
。由唯一性定理知它们相等。令
就得到要证的式子。

不妨假设对于任意

,上述解
都在
存在。这是因为考虑另一个方程
,利用解的存在区间相关定理可以证明这个方程的解在
存在,且与
有相同的轨线。

现在我们发现,对于一个固定的

,上述解把一个向量
变成另一个向量
。记这个变换为
,则集合
满足下面的性质:

(1)

是恒等变换;

(2)

;

(3)

是连续函数。

这说明集合

在映射复合运算
下构成一个
加法群
是单位元,而
的逆元。这样的具有上面三个性质的单参数连续变换群叫做
抽象动力系统( 拓扑动力系统)。如果
可微,这又可以叫做
微分动力系统

最后说一下非自治微分方程的情况。对于微分方程

,我们令
,则
,就是一个
维的自治的动力系统了。

8.2 解的稳定性

之前有研究过微分方程的解对初值的连续依赖性,那里的方法只适合自变量在有限闭区间取值的情形。而在自变量扩展到无穷区间时,这一连续性将被破坏,产生所谓混沌现象。Lyapunov(李雅普诺夫)研究了这一类问题,发展了Lyapunov稳定性的概念。其中三个核心概念是渐进稳定稳定不稳定。先通过例子直观认知它们。在上一小节的例子中,初值点只要在圆周

内部,其轨线总是随着
的增大趋于平衡点
。这时我们称平衡点是渐进稳定的。再考虑单摆的振动方程
,即
,这是一个二维动力系统。这玩意的相图大概是这样:

5eb8a381b573e5948f6369b9272d1bed.png
不会用软件画相图。。。谁来教教我

上图中点

具有如下特点,只要初值点足够靠近它,对应的轨线就会停留在
  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值