§7.5 度量空间中的紧致性

§7.5 度量空间中的紧致性

  本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系.

  由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答.

  定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为

  diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的

  diam(A)=∞ 若A是无界的

  定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中.

  Lebesgue数不一定存在.例如考虑实数空间R的开覆盖

   {(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+}

则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.)

  定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数.

  证明 设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.

  在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M>0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何

  ρ(x,y)≤ρ(x,)+ ρ(,y)<ε

  这证明

   A

的选取矛盾.

  定理7.5.2 每一个序列紧致的度量空间都是紧致空间.

  证明 设X是一个序列紧致的度量空间,A是X的一个开覆盖.根据定理7.5.1,X的开覆盖A有一个Lebesgue数,设为λ>0.

  令B={B(x,λ/3)}.它是X的一个开覆盖.我们先来证明B有一个有限子覆盖.

  假设B没有有限子覆盖.任意选取一点∈X.对于i>1,假定点已经取定,由于

  

不是X的覆盖,选取.按照归纳原则,序列已经取定.易见对于任何i,j∈Z+,i≠j,有ρ()>λ/3.序列没有任何收敛的子序列.(因为任何y∈X的球形邻域B(y,λ/6)中最多只能包含这个序列中的一个点.)这与X是序列紧致空间相矛盾.

  现在设{}是开覆盖B的一个有限子覆盖.由于其中每一个元素的直径都小于λ,所以对于每一个i=1,2,…,n存在使得

  B(,λ/3).于是{}是A的一个子覆盖.

  因此,根据定理7.5.2以及前一节中的讨论可见:

  定理7.5.3 设X是一个度量空间.则下列条件等价:

  (1)X是一个紧致空间;

  (2)X是一个列紧空间;

  (3)X是一个序列紧致空间;

  (4)X是一个可数紧致空间.

  我们将定理7.5.3的结论列为图表7.3以示强调.

  本章总结:

  (1)重点是紧致性、紧致性与分离性的关系.

  (2)度量空间(特别是)中的紧致性性质要掌握.

  (3)紧致性是否是连续映射所能保持的、可积的、可遗传的?证明时牵涉到的闭集要注意是哪个空间的闭集.

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值