几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形之间的关系(平行、全等、相似等)。基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同样具有“变换”形式的联系.数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,举例说明如下.

类型1 对称旋转组合
例1.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣6,0),B(6,0),C(0,4√3),延长AC到点D,使CD=1/2AC,过点D作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)在第二问的条件下,设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)

【解析】(1)借助△DMC∽△AOC,根据相似三角形的性质得点D的坐标为(3,6√3);
(2)先说明四边形CDFE是菱形,且其对称中心为对角线的交点M,则点B与这一点的连线即为所求的直线,再结合全等三角形性质说明即可,由点B、M的坐标求得直线BM的解析式为y=﹣√3x+6√3.
(3) 设直线y=kx+b与y轴的交点为M点.如何确定点G的位置是本题的难点也是关健所在.设Q点为y轴上一点,P在y轴上运动的速度为v,则P沿M→Q→A运动的时间为MQ/2v+AQ/v,使P点到达A点所用的时间最短,就是1/2MQ +AQ最小,或MQ+2AQ最小.
方法1:过Q作BM的垂线交BM于K,,所以QK=1/2MQ.要使1/2MQ+AQ最小,只需使AQ+QK最小(图1-2).
方法2:∵BQ=AQ, ∴MQ+2AQ最小就是MQ+AQ+BQ最小,就是在直线MO上找点G使他到A、B、M三点的距离和最小(图1-3).
方法3:本题还可以建立以MQ或∠QBO为自变量的函数,利用函数求出最小值.
可求得G点的坐标为(0,2√3).(或G点的位置为线段OM的靠近O点的三等分点)
本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,其中本题第三问是难点,学生主要不会确定点G的位置.

类型2 平移对称组合
例2.如图,已知点A(﹣4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(﹣2,0)和点D(﹣4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

(2)本题第(2)题的②,看上去是四条线段和的最值问题,其实还是两条线段和的最值问题(另两条线段长为定值).通过平移变换刨去不变的线段,把四条线段的和的最小值问题转化为两条线段和的最小值问题.

∵线段A′B′和CD的长是定值,∴要使四边形A′B′CD的周长最短,只要使A′D+CB′最短;第一种情况:如果将抛物线向右平移,显然有A′D+CB′>AD+CB,∴不存在某个位置,使四边形A′B′CD的周长最短;
第二种情况:设抛物线向左平移了b个单位,则点A′和点B′的坐标分别为A′(﹣4﹣b,8)和B′(2﹣b,2).∵CD=2,∴将点B′向左平移2个单位得B′′(﹣b,2),要使A′D+CB′最短,只要使A′D+DB′′最短,点A′关于x轴对称点的坐标为A′′(﹣4﹣b,﹣8),
∵直线A′′B′′的解析式为y=5/2x+5/2b+2.要使A′D+DB′′最短,点D应在直线A′′B′′上,将点D(﹣4,0)代入直线A′′B′′的解析式,解得b=16/5.
∴将抛物线向左平移时,存在某个位置,使四边形A′B′CD的周长最短,


类型3 两次轴对称组合
例3.已知抛物线y=ax2+bx+c与y轴交于点A(0,﹣3),与x轴分别交于B(﹣1,0)、C(﹣5,0)两点.点O为坐标原点.
(1)求此抛物线的解析式;
(2)若点D 在直线AC上方的抛物线上,当△ADC的面积最大时,求点D的坐标;
(3)若点N的坐标为(﹣3,﹣4),Q为y轴上一点,△ONQ为等腰三角形,请直接写出点Q的坐标;
(4)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短时的△OEF的面积.
【分析】本题着重考查了待定系数法求二次函数解析式,一次函数的解析式,图形的对称变换,求最短线段之和等重要知识点,综合性强,能力要求极高.考查学生分类讨论,数形结合的数学思想方法.
本题的特征是两个动点、两个定点,两个动点分别在两条直线上运动,在两条直线上各找一个点使之与两个定点相连构成的四边形周长(实际还是三线段和,AM为定值)最小.因此分别构建两个定点关于两个动点所在直线的对称点,把“三折线”转“直”,从而可求周长的最小值.


(3)如图2,过N作NF⊥y轴于F,
∵点N的坐标为(﹣3,﹣4),∴OF=4,NF=3,∴ON=5,
