matlab点云聚类,基于区域聚类分割的点云特征线提取

本文提出一种点云特征线提取方法,结合社会粒子群优化模糊C-均值聚类算法进行区域分割,再通过局部径向基函数曲面重构计算曲率信息。采用基于平均曲率的局部特征权值和曲率极值法识别特征点,构建特征线。实验表明,该方法能有效提取点云模型的显著、尖锐及过渡特征线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

王晓辉

, 吴禄慎

, 陈华伟

, 胡赟

, 石雅莹

. . 基于区域聚类分割的点云特征线提取. 光学学报, 2018, 38(11): 1110001-。

Wang Xiaohui

, Wu Lushen

, Chen Huawei

, Hu Yun

, Shi Yaying

. . Feature Line Extraction from a Point Cloud Based on Region Clustering Segmentation. Acta Agronomica Sinica, 2018, 38(11): 1110001-.

def10f178691bd68be09438f4d8e3e16.gif

基于区域聚类分割的点云特征线提取

王晓辉1,2, 吴禄慎1*, 陈华伟1, 胡赟1, 石雅莹1

1南昌大学机电工程学院, 江西 南昌 330031

2赤峰学院建筑与机械工程学院, 内蒙古 赤峰 024000

摘要

提出一种非结构化点云特征线提取方法,其过程主要分为区域分割和特征检测两个阶段。在区域分割阶段,引入社会粒子群优化模糊C-均值聚类算法对点云数据进行区域聚类,得到边界清晰的各个分区,便于后续边界特征的提取;在特征检测阶段,对各个分区进行局部径向基函数曲面重构,以获取各个分区内采样点的曲率信息。提出基于平均曲率计算的局部特征权值,并通过局部特征权值和曲率极值法对特征点进行双重检测。并通过建立特征点的最小生成树构建特征曲线。对不同点云模型进行特征线提取实验,结果表明,本文方法既能够提取点云模型中的显著特征和尖锐特征,也能够很好地提取特征强度变化的曲线特征。

关键词

图像处理; 点云数据; 特征线提取; 区域分割; 局部特征权值; 曲率

Feature Line Extraction from a Point Cloud Based on Region Clustering Segmentation

Wang Xiaohui1,2, Wu Lushen1*, Chen Huawei1, Hu Yun1, Shi Yaying1

1School of Mechatronic Engineering, Nanchang University, Nanchang, Jiangxi 330031, China

2School of Architectural and Mechanical Engineering, Chifeng University, Chifeng, Inner Mongolia 0 24000, China

Abstract

This study presents a novel methodology to extract feature lines from unorganized point clouds. In this study, the extraction of feature lines from point clouds is divided into two stages: region segmentation and feature detection. In the region segmentation stage, the social particle swarm optimization fuzzy C-means clustering algorithm is introduced to cluster the point cloud data; further, each partition is obtained with a clear boundary, which is beneficial to extract the boundary features. In the feature detection stage, local surface reconstruction that is based on the radial basis function is conducted for each partition. Additionally, the curvature values of the sampling points are calculated according to the established local implicit surface; further, local feature weights that are based on the mean curvature are proposed. The feature points can be identified based on the local feature weights using the curvature extremum method. Finally, the feature lines can be generated by establishing the minimum spanning tree of the feature points. Different point cloud models are selected to perform the feature line extraction experiments. The experimental results exhibit that the proposed method can extract significant and sharp features from the point cloud models along with the curve features with intensity variations.

Key words

image processing; point clouds; feature line extraction; region clustering segmentation; local feature weight; curvature

论文信息

doi:10.3788/AOS201838.1110001

OCIS codes:

100.6890; 150.6910; 200.4560

收稿日期:2018-03-22

接受日期:2018-05-28

基金项目:国家自然科学基金51065021,51365037,51705229

1 引言

点云数据的特征提取是计算机可视化、数字几何处理及逆向工程等领域中的一项重要研究内容, 已广泛用于曲面重建、数据分割、曲线匹配和拼接等几何处理中。目前, 对点云特征提取的研究主要集中在对特征线的提取及运算上。在三维点云数据中, 特征线是特征点的有序连接, 可用于反映三维模型的表面结构特征及其几何形状。通过对三维点云数据进行分析, 可准确识别能代表点云模型特征的数据点, 从而获得特征曲线。

点云数据的特征提取是指从点云模型中识别出几何模型的轮廓、尖锐处、凸凹处和过渡光滑处的结构特征及形状特征的过程。特征提取主要有基于点和基于三角网格2种方式。学者们从分析点云数据的邻域信息及几何特性方面入手, 对特征线提取问题展开了研究。Gumhold等[通过计算邻域图建立局部点云之间的连接信息, 并用主成分分析法确定特征点, 但对曲面凹凸性差别小的谷脊特征提取效果较差; Pauly等[在前述方法的基础上引入多尺度分析, 通过分析局部邻域内的点成为特征点的可能性, 以此来识别特征点, 这种方法更为稳健抗噪。Demarsin等[提出了一种基于图论的点云特征线提取算法。采用一级分割法提取候选特征点, 并对其进行图形化处理重新获得尖锐特征线, 构造最小生成树重新连接特征线, 但该算法仅能应用于均匀分布的点云数据。Kim等[使用近似移动最小二乘法, 通过逼近曲面来估计曲率及其导数, 然后, 利用Delaunay三角剖分来计算邻域信息, 从而提取谷脊点。但该方法不能用于包含少量邻域点的尖锐点处。Ni等[提出了一种邻域几何属性分析方法(AGPN), 用于检测点云的三维边缘和跟踪特征线。在边缘检测步骤中, 通过分析每个查询点邻域的几何性质, 结合随机采样一致性(RANSAC)和角间隙度量来检测边缘。在特征线跟踪步骤中, 采用基于区域生长和模型拟合的混合方法跟踪特征线。该方法可靠性好, 且AGPN对输入数据的点密度不敏感。Altantsetseg等[使用截取的傅里叶级数检测点云中的特征点, 并使用曲率加权拉普拉斯算子平滑方法稀疏潜在特征点, 再通过增加提取点来构造特征线, 并投影到原始点云上。聂建辉等[将符号曲面变化度与特征区域分割相结合, 为点云数据提供了一种有效的特征线提取方法。但是该方法在强噪声的情况下, 易导致提取的特征线出现断裂和缺损的情况。

在点云数据获取过程中, 噪声和数据的不完整会直接影响点云特征的提取效果。为此, 学者们通过引入数学方法来对特征提取算法进行改进。Park等[提出了一种基于张量投票理论的新方法, 可从包含随机噪声、孤立点和伪影的非结构化点云中提取尖锐特征, 且对噪声起到了很好的抵制作用。Liu等[使用多尺度算子, 即法线的差来检测潜在特征线附近的特征点。Zhang等[将基于泊松分布的统计模型作为一种工具用于从点云中提取特征点。该方法不需要预先进行曲面重构, 并且不受噪声点、邻域尺度或点云采样质量的影响。李明磊等[提出了一种基于体素生长的点云结构直线段提取方法, 以体素为单位进行邻域判断, 并采用基于体素的区域生长对结构直线段的分布区域进行分割, 根据分布区域的范围及其所在平面的数学方程实现对特征的提取和优化。该方法可以准确高效地得到较为理想的特征提取结果。

对于结构复杂的点云模型, 为了能使曲面的参数线在局部区域保持与几何特征的对应关系, 可以先对点模型进行分区。张爱武等[提出了一种机载LiDAR点云分类的自适应特征选择方法, 其依据地形起伏情况对整体点云数据进行区域划分, 自适应选择适宜该区域LiDAR点云分类的特征集合。该方法可以有效地降低特征维数, 缩短运算时间, 且分类精度较高。Weber等[提出了一种使用高斯映射聚类进行特征检测的技术, 利用高斯映射聚类对局部邻域上当前点组成的三角形的法向进行聚类, 依据聚类个数判别特征点。该方法对尖锐特征信息敏感, 但是对强度渐变的特征信息无法提取。Xu等[研究了一种分割曲面和从不规则断裂碎片的三角网格中提取边缘特征线的新方法, 通过使用基于顶点法向量的聚类算法来完成粗糙表面分割。为了区分原始面和断裂面, 又引入了一种新的积分不变量来计算表面粗糙度。通过基于面法向量和粗糙度合并面来实现精确的表面分割, 再基于表面分割提取边缘特征线。Bazazian等[提出一种基于分割的多尺度边缘提取技术。根据测地距离通过全局分析对点云进行分割, 再根据局部邻域定义多尺度算子。通过在点云的多个尺度上应用该算子, 以确定特征的持续性。该方法提高了边缘的检测精度, 且具有较好的稳健性。

由上述分析可知, 点云特征提取结果主要受噪声干扰、数据的离散性和不完整性, 以及点云模型自身的复杂性和多样性等因素的影响较大。现有的方法对点云模型的轮廓线、棱线等提取效果较好, 但对过渡特征的提取仍存在一定的缺陷。过渡特征线是开曲线, 过度强调其闭合特性并不能求取所有特征线。为此, 本文提出了基于区域聚类分割的无组织点云特征线提取新方法。其应用社会粒子群优化模糊C-均值(SPSO-FCM)聚类算法对点云模型进行分区, 将其划分为具有几何特征相似性的多个区域, 且使曲面的参数线在局部区域保持与几何特征的对应关系, 得到区域边界清晰的各个分区。然后对每一分区进行局部径向基函数(RBF)曲面重构, 计算出局部区域点云的曲率信息, 采用局部特征权值和曲率极值法识别特征点。构建特征点的最小生成树生成特征曲线。基于平均曲率的局部特征权值能表达采样点曲面变化形状, 反映尖锐点的特性; 分区求解曲率信息及特征信息, 能减少计算量, 提高时间效率。

2 本文算法

2.1 算法概述

输入点云数据采用聚类优化算法对点云进行区域分割, 将点云划分为包含原始对象特征信息的各个聚类区域; 再对每个分区的点云分别进行RBF曲面重构, 并计算每一分区的曲率信息, 通过设置局部特征权值和筛选曲率极值点来识别区域特征点; 构建特征点的最小生成树, 并进行分割、细化, 提取出特征线。算法简易流程如图1所示。

图1

Fig. 1 9ccf699001cdac793e466eaabafc4b8d.png

图1 算法过程图。(a)原始点云; (b)聚类分割结果; (c)特征点识别结果; (d)生成特征线Fig. 1 Overall procedure of the proposed method. (a) Original point cloud; (b) region clustering segmentation result; (c) feature point recognition result; (d) generation of the feature lines

2.2 算法实施步骤

2.2.1 点云区域聚类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值