看课本关于功率谱分析的介绍,需要了解的定义和定理有:
1:能量信号
2:功率信号
3:信号之间的相关函数、自相关函数
4:能谱、功率谱、帕塞瓦尔定理、能量守恒定律
5:维纳-欣钦wiener-khintchine定理
维纳-辛钦定理,又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。该定理指出:任意一个均值为常数的广义平稳随机过程的功率谱密度是其自相关函数的傅立叶变换。
6:谱估计方法、经典谱估计、现代谱估计
功率谱估计概述:http://www.360doc.com/content/12/0531/20/7769620_215061811.shtml
经典谱估计方法:https://blog.csdn.net/u013457167/article/details/85805019
https://blog.csdn.net/weixin_41999529/article/details/89642593
经典谱估计方法缺点:分辨率低,方差性能不好。
7:现代谱估计(参数模型法)简述
摘自:AR模型功率谱估计常用算法的性能比较_陈海英
AR - Auto Regression, 自回归模型。自回归模型AR(p),p-自回归阶数;AR可以解决当前数据与后期数据之间的关系;
MA - Moving Average,移动平均模型。移动平均模型MA(q),q-移动平均阶数;MA则可以解决随机变动也就是噪声的问题;
ARMA - Auto Regression and Moving Average,自回归移动平均模型。自回归移动平均模型是与自回归和移动平均模型两部分组成;(以上三类模型可以直接应用于平稳时间序列模型)
ARIMA - Auto Regression Integreate Moving Average,差分自回归移动平均模型。同前面的三种模型,ARIMA模型也是基于平稳的时间序列的或者差分化后是稳定的,另外前面的几种模型都可以看作ARIMA的某种特殊形式。表示为ARIMA(p, d, q)。p为自回归阶数,q为移动平均阶数,d为时间成为平稳时所做的差分次数。(前面三种模型,d=0,即平稳时间序列模型不需要做差分)
ARIMA模型分析时间序列的基本步骤为:将原始数据的时间序列可视化,观察平稳与非平稳分布 - 通过单位根检验,判断时间序列是否为平稳 - 通过ADF找到最优参数,建立ARIMA模型 - 进行预测
8:AR模型参数提取算法
https://blog.csdn.net/destruggler/article/details/97627085
如果自相关是拖尾,偏相关截尾,则用 AR 算法
如果自相关截尾,偏相关拖尾,则用 MA 算法
如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。
不平稳,怎么办?
答案是差分,什么是差分?不介绍了,给个链接:
http://zh.wikipedia.org/wiki/%E5%B7%AE%E5%88%86
原文链接:https://blog.csdn.net/zhou85xin/article/details/84216393
9:burg算法
摘自:AR模型功率谱估计常用算法的性能比较_陈海英
摘自:https://wenku.baidu.com/view/bbb63e5a3186bceb18e8bb05.html
1.判断时间序列是否平稳,可以采用ACF检验、ADF单位根检验等方法。
2若时间序列平稳,则直接转3;若时间序列非平稳,则可采用差分的方法,将其转换为平稳时间序列,转3。
3.计算AR模型的参数(burg算法,最小二乘法,自相关算法等)与定阶(根据AIC准则,SC准则,FPE准则等)。
4.检验3中确定AR模型的拟合度,主要是检验残差序列是否服从N(0,σ^2)白噪声。
5.利用AR模型进行预测。
原文链接:https://blog.csdn.net/u014557232/article/details/50986298
10:定阶方法
摘自:Burg谱的阶数依赖性与最佳正则化参数的选择_罗晓华
定阶方法遵循AIC(赤池信息化准则)、BIC(贝叶斯信息化准则),马洛斯C方法对其阶数进行限定
摘自:多种变量选择方法在ARMA阶数确定中的比较_王锐
定阶一般步骤为:
(1)确定p值的上限,一般是序列长度N的比例或是lnN的倍数。
(2)在不超过max(p)值的前提下,从1开始根据某一原则确定最优p;
本例中我将p值的上限设为N/2=18,定阶准则用AIC(最小信息准则)和SC(施瓦茨准则),根据两个准则求得的估计量越小说明阶数越优。
AIC=2*p+N*ln(σ^2) SC=p*ln(N)+N*ln(σ^2)
σ^2是观测值与预测值之间残差的方差。
参考:https://blog.csdn.net/u014557232/article/details/50986298
https://blog.csdn.net/baidu_38172402/article/details/89075582