Exponential Coordinate:线性差分方程及性质 Cayley-Hamilton

Exponetial Coordinate使用一个旋转轴(用单位长度的$w$向量表示)和一个关于该轴的一个旋转角度$\theta$表示。$r=w\theta\in R^3$,其中$r$是三元向量,因此是三元素的旋转表示方法。

简单的线性差分方程

初始条件: \(\dot{x}(t)=ax(t) \qquad x(0)=x_0\), 其中:
\[e^{at}=1+at+\frac{(at)^2}{2!}+\frac{(at)^2}{3!}+...\]
从而有:
\[x(t)=e^{at}x_0\]

现在扩展到矩阵形式: \(\dot{x}(t)=Ax(t),x(t)\in R^{n},A\in R^{n\times n},x(0)=x_0\),其中:
\[e^{At}=1+At+\frac{(At)^2}{2!}+\frac{(At)^2}{3!}+...\],从而:
\[x(t)=e^{At}x_0\]

Note: \(\dot{x}(t)=Ae^{At}x_0=e^{At}Ax_0\). 一般来说,矩阵乘法不满足交换率,即\(AB!=BA\), 但是有\(e^{At}A=Ae^{At}\)

$e^{At}$展开式有无穷多项,不利于我们的计算,所以构造下面的式子来解:

如果\(A=PDP^{-1}\),则有:
\[ \begin{align*} e^{At}&=I+At+\frac{(At)^{2}}{2!}+...\\ &=I+(PDP^{-1})t+(PDP^{-1})(PDP^{-1})\frac{t^{2}}{2!}+... \\ &=P(I+Dt+\frac{(Dt)^{2}}{2!}+...)P^{-1} \\ &=Pe^{Dt}P^{-1} \end{align*} \]
如果D是对角阵,\(D=diag\{d_1,d_2,...,d_n\}\), 那它的指数式表达如下:
\[e^{Dt}=\begin{bmatrix} e^{d_1t}&0&\cdots&0\\ 0&e^{d_2t}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&e^{d_nt} \end{bmatrix}\]
综上所述,\(e^{At}\)有如下的性质:
1.\(\frac{d}{dt}e^{At}=Ae^{At}=e^{At}A\)
2.如果\(A=PDP^{-1}\),则有\(e^{At}=Pe^{Dt}P^{-1}\)
3.如果\(AB=BA\),则有\(e^Ae^B=e^{A+B}\)
4.\((e^{A})^{-1}=e^{-A}\)

Cayley-Hamilton方程

\(A\in R^{nxn}\)是常量,特征多项式:
\[p(s)=det(Is-A)=s^n+c_{n-1}s^{n-1}+...+c_1s+c_0\]
所以有: \[p(A)=A^n+c_{n-1}A^{n-1}+...+c_1A+c_0I=0\]

\(p(s)=0\)的根是矩阵s的特征值

转载于:https://www.cnblogs.com/rogerjin/p/6607667.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值