一阶差分序列garch建模_线性差分方程

27ec941b36e871fe86c1fc84812f62e1.png

内容提要:

1 齐次线性差分方程

1-1 一阶齐次线性差分方程

1-2 二阶齐次线性差分方程(容许复数解)

1-3 二阶齐次线性差分方程(容许实数解)

1-4 齐次线性差分方程

2 线性差分方程

3 例子

本文主要参考文献.

由于最近需要用到一些线性差分方程,所以这里做一个复习小结.

注:由于阶数为

或者
以上,处理方法毫无区别,所以我们集中火力搞定
阶情形,一般情形则不加证明给出结果. 但不难由
阶情形照搬证明过去.

1 齐次线性差分方程

1-1 一阶齐次线性差分方程

称如下形式的方程为序列

的一阶齐次线性差分方程:

,式中
为实数.

显然这个
方程的解为
.
为任意实数.

1-2 二阶齐次线性差分方程(容许复数解)

称如下形式的方程为序列

的二阶齐次线性差分方程:

,式中
为实数.

[特征方程与特征根] 我们把矩阵

的特征多项式
称为齐次线性差分方程
特征方程,而它的两个根
(可能有重根)叫做
特征根.

[特解]

(
) 为方程的特解.
[证明]
,两边同时乘以
,得

因此
)满足原方程.

1-2-1 不等特征根情形

如果
, 那么,方程
的通解为
.
[证明] 由于

所以对任意的常数
, 我们都有
是方程
的解.

还需要验证所有的解具有这个形式. 对于给定的一组初值
,有

这个关于
的二元一次方程组的系数矩阵的行列式为

所以给定初值
,就能唯一确定系数
.

1-2-2 相等特征根情形

如果
, 那么,方程
的通解为
.
[证明] 由于
是特征多项式
的二重根 ,所以它也是
的二重根. 把
的两边对
求导,得
,因为重根求导之后仍为根,所以
的根,两边乘以
得到
也是
的根,即
也是特解. 容易验证
都是方程
的解.

还需要验证所有的解具有这个形式. 对于给定的一组初值
,有

这个关于
的二元一次方程组的系数矩阵的行列式为

所以给定初值
,就能唯一确定系数
.

1-3 二阶齐次线性差分方程(容许实数解)

延续上一节的记号.

(i) 若特征方程有两不等实根
,那么这个
方程的解为
.
为任意实数.

(ii) 若特征方程有两相等实根
,那么这个
方程的解为
.
为任意实数.

(iii) 若特征方程有两共轭复根
那么两个特解为
,由欧拉公式有

特解含有复数部分,我们希望解是实的,可以凑出新的两个特解

, 因此通解为
.

1-4 齐次线性差分方程

[齐次线性差分方程] 称如下形式的方程为序列

的齐次线性差分方程:

( )

式中,

,
为实数.

[特征方程与特征根] 我们把矩阵

的特征多项式
称为齐次线性差分方程 ( ) 的
特征方程,而它的
非零根
(可能有重根)叫做
特征根.

如果
为两两不等的实根, 那么,方程 ( ) 的通解为
.

2 线性差分方程

[线性差分方程] 称如下形式的方程为序列

的线性差分方程:

( )

式中,

,
为实数而
的已知函数. 并且称方程:

( )

为( )的导出齐次线性差分方程.

线性差分方程( )的解为导出齐次线性差分方程( )的通解和特解之和.

3 例子

[例1] (等差数列) 等差数列

为一阶线性差分方程.

它的导出齐次方程为

, 特征根为
. 于是导出齐次方程的解为
.

猜测原方程的一个特解为

, 那么全部解为

[例2]

.

它的导出齐次方程为

, 特征根为
. 于是导出齐次方程的解为
.

猜测原方程的一个特解为

, 那么全部解为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值