内容主要提取自 edX 平台上Chalmers的micromaster项目:Emerging Automotive Technologies: Sensor Fusion and Non-linear Filtering for Automotive Systems。
对于如下系统动态模型:
其中 为噪声。
当 A 为常矩阵时:
移项并同乘 有:
两边同时从 t 积分至 t+T,其中 T 为采样周期,得:
整理并换元积分上下限:
重写成:
对于一个离散系统,我们希望得到:
比较得:
系统噪声 通常可看作是高斯白噪声(随机过程),其有如下性质:
高斯白噪声的瞬时值(幅值)服从高斯分布 ,而它的功率谱密度(在频域 f 上)是常数 Q (自相关函数是功率谱密度的傅里叶反变换,常数的傅里叶反变换为冲激函数)。高斯白噪声在任意两个不同时刻上的随机变量之间,不仅是互不相关的,而且还是统计独立的(当 时,自相关函数为 0 )。 高斯白噪声是一种理想的噪声模型。
根据
也服从高斯分布(高斯分布乘常数并求和还是高斯分布)。其中:
当 A 为时变矩阵时:
在 t 到 t+T 区间内近似 ,则
所以:
服从高斯分布,其中: