利用Python进行数据分析(11) pandas基础: 层次化索引

 
层次化索引

层次化索引指你能在一个数组上拥有 多个索引,例如:
有点像Excel里的合并单元格对么?

根据索引选择数据子集
 
以外层索引的方式选择数据子集:

以内层索引的方式选择数据:

多重索引Series转换为DataFrame
 
层次化索引在数据重塑和分组中扮演着很重要的角色,例如,上面的层次化索引数据可以转换为一个DataFrame:

对于一个DataFrame,横轴和竖轴都可以有层次化索引,例如:

重排分级顺序

根据索引交换
swaplevel()函数可以将两个级别的数据进行交换,例如:

根据索引排序
sortlevel()函数根据单个级别的值对数据进行排序,例如:
以行按第一层进行排序:

以行按第二层进行排序:

以列按第一层进行排序:

根据级别汇总统计

多层次索引的数据,汇总的时候可以单独按照级别进行,例如:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值