随机变量的期望和方差

例1【2017全国卷2理科13题高考真题】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回的抽取100次,\(X\)表示抽到的二等品件数,则\(DX\)=________。

分析:本题目由于是有放回的抽取了100次,故应该相当于做了100次独立重复实验,故抽到的二等品件数应该服从二项分布,即\(X\sim B\left(100,0.02\right)\)

那么由随机变量的期望和方差公式可知\(n=100,p=0.02\)\(EX=np=100\times 0.02=2\)\(DX=np(1-p)=100\times0.02\times(1-0.02)=1.96\)

例2【2018全国卷3理科第8题高考真题】某群体中的每位成员始于移动支付的概率都是\(p\),各成员的支付方式相互独立,设\(X\)为该群体的10位成员中使用移动支付的人数,\(DX=2.4\)\(P(X=4)<P(X=6)\),则\(p\)=【】

$A.0.7$ $B.0.6$ $C.0.4$ $D.0.3$

分析:\(X\sim B\left(10,p\right)\),则\(DX=10\cdot p\cdot (1-p)=2.4\),故由此判断只能选\(B\)\(C\)

\(P(X=4)<P(X=6)\),即\(C_{10}^4\cdot p^4\cdot (1-p)^6<C_{10}^6\cdot p^6\cdot (1-p)^4\),即\((1-p)^2<p^2\),验证\(B\)满足,故选\(B\)

转载于:https://www.cnblogs.com/wanghai0666/p/7120728.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值