
用旋转变换解决线段之和的最值问题
旋转、平移、轴对称,是几何等量三大变换,而其中的旋转变换又和九年级的圆知识相关,综合性非常强,许多看似走投无路的解题障碍,经过旋转变换,瞬时柳暗花明。但是,怎么想到使用旋转变换,依然是学生解题过程中需要解决的问题。
题目
已知,在△ABC中,∠ACB=30°
(1)如图1,当AB=AC=2时,求BC的值;
(2)如图2,当AB=AC,点P是△ABC内一点,且PA=2,PB=√21,PC=3,求∠APC的度数;
(3)如图3,当AC=4,AB=√7(CB>CA),点P是△ABC内一动点,则PA+PB+PC的最小值为___________.

解析:
(1)底角为30°的等腰三角形,可通过底边上的高,分成两个含30°角的直角三角形,再利用它的特殊边长关系,可求得BC=2√3;也可以过点C向BA延长线作垂线,达到同样目的。
(2)点P到三个顶点的距离已知,而去求一个∠APC的度数,怎么都透露出一丝诡异,已知线段求角度,除非是特殊线段比,例如上一小题中的含30°角的直角三角形,或者勾股定理,这些都是联系了线段与角度关系的定理,本小题中给出的是三条线段长,于是自然想到将它们构造成一个三角形,从而判断它是直角三角形,这就是基本思路。
怎么将三条线段凑到一个三角形中呢?
等腰三角形其实可以看成一条腰绕顶点旋转至另一条腰的位置,于是本小题中,线段AB绕点A逆时间旋转120°到达线段AC,当它旋转时,带动整个△ABP也旋转,因此,我们可考虑将△ABP绕点A逆时针旋转120°,如下图:

很显然,辅助线构造出了△ABP≌△ACP',成功将线段BP转换到了CP'位置,而它恰好又和线段PC同处△CPP'中,那么,剩下的PP'与PA会是什么数量关系呢?咦!△APP'也是一个顶角为120°的等腰三角形呢!第一小题中所求结果中不正好包含这个方法吗?
根据前一小题的计算方法,PP'=√3AP=2√3,PC=3,PB=CP'=√21,它们正好符合勾股定理逆定理,于是∠CPP'=90°,∠APP'=30°,最后相加得∠APC=120°;
(3)通常情况下,求三条线段和最值,要将它们凑到一根线段上,利用两点之间线段最短公理来求解,基本思路确定,下面开始实施。
现在只有∠ACB=30°已知,因此我们的旋转最好选择以点C为旋转中心,这样方便利用这个特殊角度,旋转哪部分?旋转多少角度?
因为我们的目标是将AP,BP,CP通过旋转转换到一根线段上,而位于30°角内部可供变换的只有线段CP,所以就是它啦!
旋转多少度比较合适呢?旋转变换中,最特殊的莫过于等边三角形,而它是通过旋转一条边60°后得到的,受此启发,我们将CP绕点C逆时针旋转60°,同时,另一条需要转换的边BP也随之旋转60°,相当于将△BCP绕点C逆时针旋转60°,如下图:

这样旋转后,得到等边△CPP',现在我们检查旋转变换目的达到没有,AP+BP+CP=AP+PP'+B'P'=AB',现在,只有当P,P'在线段AB'上,即它们的和最小。
此时注意观察△AB'C,由△BCP≌△B'CP'可得∠BCP=∠B'CP',因此∠BCB'=∠PCP'=60°,再加上∠ACB=30°,得到∠ACB'=90°,这个直角三角形中,已知AC是不够的,还需要知道B'C即BC才行,其实只需要作一根垂线即可求得,如下图:

上图中,△ACE是含30°的直角三角形,可得AE=2,CE=2√3,再由Rt△ABE中勾股定理求得BE=√3,从而求得BC=3√3,即CB'=3√3,最后再由勾股定理求得AB'=√43.
解题反思:
旋转与平移、轴对称相比,在使用难度上较大,因为旋转要求找准旋转中心、旋转角,影响旋转过程的因素较多,再加上初中阶段在旋转变换上教材要求难度并不高,只是在部分压轴题中拔高。所以造成学生在面对需要旋转变换的题目时,第一眼总是很难想到上面去。但无论如何,作为三大变换之一,在学习全等或相似时,练习中都有涉及,平时解题后,如果能注重归纳总结,那么这一类图形便会印在脑子里,当再次遇到它的同类时,就能调用。