python 根据评分排序_excel+python 亚马逊kindle评论数据分析

本文通过Excel和Python分析亚马逊Kindle评论数据,探讨产品好评率、受欢迎点。发现Kindle评分普遍高,用户主要在1月、12月及8-9月购买,且喜爱其轻便、流畅、操作简单、人工智能功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b5c5364f9561fe7fe452ef5fff64270b.png

fc7152a269d146a1a30423af8bb29652.png

在电子商务领域,用户除了关心产品的功能和价格外,最主要的就是产品口碑,很多人都在评论区查看产品的恰用户评价,因此,用户对产品的评价评论亦是产品的重要指标。

本文将通过excel和python两个工具,针对亚马逊平台上的kindle商品的评论数据进行分析,探索两个方面的问题:

  • kindle产品的好评率如何?
  • kindle最受用户欢迎的有点是哪些?

一、提出问题

  • kindle各产品的评论数排名和平均评分。
  • kindle各产品的好评率,推荐占比。
  • kindle各产品评论数和评价随时间的变化。
  • kindle最受用户欢迎的点是哪些。

二、读取、理解数据

数据来源:

https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products/home​www.kaggle.com

理解数据,数据字段含义如下:

  • id:用户编号
  • name:产品名称
  • asin:产品编号
  • brand:产品品牌
  • categories:类别
  • keys:类别关键词
  • manufacturer:制造商
  • reviews.date:评论时间
  • reviews.dateAdded:追加评论时间
  • reviews.dateSeen:评论可见时间
  • reviews.didPurchase:评论已购买
  • reviews.doRecommend:评论是否被推荐
  • reviews.id:评论ID
  • reviews.numHelpful:帮助性分子数
  • reviews.rating:评分
  • reviews.sourceURLs:评论链接
  • reviews.text:评论内容
  • reviews.title:评论标题
  • reviews.userCity:用户所在城市
  • reviews.userProvince:用户所在省
  • reviews.username:用户名

三、数据清洗

1、选取子集

1.1 根据产品类别categary,筛选选择包含kindle的数据。

488da079b8c379641e621091aaf9ff96.png

718e7fa01e3896f182c97aa6a75f1baf.png

33feaf5f8f2a632eddf4dbf3897461e4.png

2ca6993918e2d9dbf10eab91a991349a.png

经过筛选,共筛选出16976条关于kindle的产品数据。

1.2 隐藏无关的字段

根据分析需要,我们只需保留以下字段:

  • name:产品名称
  • asin:产品编号
  • categories:类别
  • reviews.date:评论时间
  • reviews.doRecommend:评论是否被推荐
  • reviews.rating:评分
  • reviews.text:评论内容
  • reviews.title:评论标题

318dc0600825bae60651a1a66d2e5bc9.png

2、列名重命名

为便于分析,将列名命名为中文名。

23c0449fd1b5611a943deb6c495a649d.png

3、删除重复项

9d9ef0f980d27b80a1a7349873e7db17.png

根据目标数据对数据进行去重,本次数据表中无重复值,因此去重结果如下:

f3cdf3f59d72d45d5f7e02dfa13e08a4.png

4、处理缺失值

缺失值处理主要又四种方法:(1)对缺失内容进行手动补全;(2)删除缺失值;(3)用平均值代替;(4)用统计模型计算的值代替缺失值。

通过筛选条件,发现个字段均又重复值,对于缺失值,根据本次分析目的,对确实行进行如下两种处理方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值